BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 24410358)

  • 1. Comparison of structure determination methods for intrinsically disordered amyloid-β peptides.
    Ball KA; Wemmer DE; Head-Gordon T
    J Phys Chem B; 2014 Jun; 118(24):6405-16. PubMed ID: 24410358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of a Paramagnetic Spin Label on the Intrinsically Disordered Peptide Ensemble of Amyloid-β.
    Sasmal S; Lincoff J; Head-Gordon T
    Biophys J; 2017 Sep; 113(5):1002-1011. PubMed ID: 28877484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Dynamics Simulations Combined with Nuclear Magnetic Resonance and/or Small-Angle X-ray Scattering Data for Characterizing Intrinsically Disordered Protein Conformational Ensembles.
    Chan-Yao-Chong M; Durand D; Ha-Duong T
    J Chem Inf Model; 2019 May; 59(5):1743-1758. PubMed ID: 30840442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of force fields for Alzheimer's A β42: A case study for intrinsically disordered proteins.
    Carballo-Pacheco M; Strodel B
    Protein Sci; 2017 Feb; 26(2):174-185. PubMed ID: 27727496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homogeneous and heterogeneous tertiary structure ensembles of amyloid-β peptides.
    Ball KA; Phillips AH; Nerenberg PS; Fawzi NL; Wemmer DE; Head-Gordon T
    Biochemistry; 2011 Sep; 50(35):7612-28. PubMed ID: 21797254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The combined force field-sampling problem in simulations of disordered amyloid-β peptides.
    Lincoff J; Sasmal S; Head-Gordon T
    J Chem Phys; 2019 Mar; 150(10):104108. PubMed ID: 30876367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Inferential Structure Determination of Ensembles for Intrinsically Disordered Proteins.
    Brookes DH; Head-Gordon T
    J Am Chem Soc; 2016 Apr; 138(13):4530-8. PubMed ID: 26967199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient construction of a diverse conformational library for amyloid-β as an intrinsically disordered protein.
    Salehi N; Amininasab M; Firouzi R; Karimi-Jafari MH
    J Mol Graph Model; 2019 May; 88():183-193. PubMed ID: 30708285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic approaches unraveling regulation and aggregation of intrinsically disordered β-amyloids implicated in Alzheimer's disease.
    Kumari A; Rajput R; Shrivastava N; Somvanshi P; Grover A
    Int J Biochem Cell Biol; 2018 Jun; 99():19-27. PubMed ID: 29571707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Practical Guide to All-Atom and Coarse-Grained Molecular Dynamics Simulations Using Amber and Gromacs: A Case Study of Disulfide-Bond Impact on the Intrinsically Disordered Amyloid Beta.
    Smardz P; Anila MM; Rogowski P; Li MS; Różycki B; Krupa P
    Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling structural interconversion in Alzheimers' amyloid beta peptide with classical and intrinsically disordered protein force fields.
    Wu KY; Doan D; Medrano M; Chang CA
    J Biomol Struct Dyn; 2022; 40(20):10005-10022. PubMed ID: 34152264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generating Intrinsically Disordered Protein Conformational Ensembles from a Database of Ramachandran Space Pair Residue Probabilities Using a Markov Chain.
    Cukier RI
    J Phys Chem B; 2018 Oct; 122(39):9087-9101. PubMed ID: 30204435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR Spectroscopic Studies of the Conformational Ensembles of Intrinsically Disordered Proteins.
    Kurzbach D; Kontaxis G; Coudevylle N; Konrat R
    Adv Exp Med Biol; 2015; 870():149-85. PubMed ID: 26387102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. General Purpose Water Model Can Improve Atomistic Simulations of Intrinsically Disordered Proteins.
    Shabane PS; Izadi S; Onufriev AV
    J Chem Theory Comput; 2019 Apr; 15(4):2620-2634. PubMed ID: 30865832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison and Evaluation of Force Fields for Intrinsically Disordered Proteins.
    Rahman MU; Rehman AU; Liu H; Chen HF
    J Chem Inf Model; 2020 Oct; 60(10):4912-4923. PubMed ID: 32816485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ensemble Calculation for Intrinsically Disordered Proteins Using NMR Parameters.
    Kragelj J; Blackledge M; Jensen MR
    Adv Exp Med Biol; 2015; 870():123-47. PubMed ID: 26387101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and Dynamics of Intrinsically Disordered Proteins.
    Fu B; Vendruscolo M
    Adv Exp Med Biol; 2015; 870():35-48. PubMed ID: 26387099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presence of intrinsically disordered proteins can inhibit the nucleation phase of amyloid fibril formation of Aβ(1-42) in amino acid sequence independent manner.
    Ikeda K; Suzuki S; Shigemitsu Y; Tenno T; Goda N; Oshima A; Hiroaki H
    Sci Rep; 2020 Jul; 10(1):12334. PubMed ID: 32703978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-Free Validation of Residual Dipolar Coupling and Paramagnetic Relaxation Enhancement Measurements of Disordered Proteins.
    Newby FN; De Simone A; Yagi-Utsumi M; Salvatella X; Dobson CM; Vendruscolo M
    Biochemistry; 2015 Nov; 54(46):6876-86. PubMed ID: 26479087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational propensities of intrinsically disordered proteins from NMR chemical shifts.
    Kragelj J; Ozenne V; Blackledge M; Jensen MR
    Chemphyschem; 2013 Sep; 14(13):3034-45. PubMed ID: 23794453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.