These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 2441067)

  • 61. Voltage-dependent calcium and potassium channels in Schwann cells cultured from dorsal root ganglia of the mouse.
    Amédée T; Ellie E; Dupouy B; Vincent JD
    J Physiol; 1991 Sep; 441():35-56. PubMed ID: 1667796
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Single calcium-dependent potassium channels in clonal anterior pituitary cells.
    Wong BS; Lecar H; Adler M
    Biophys J; 1982 Sep; 39(3):313-7. PubMed ID: 6291655
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Potassium channels in the basolateral membrane of the rectal gland of Squalus acanthias. Regulation and inhibitors.
    Gögelein H; Greger R; Schlatter E
    Pflugers Arch; 1987 Jun; 409(1-2):107-13. PubMed ID: 2441351
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Calcium-activated potassium channels in native endothelial cells from rabbit aorta: conductance, Ca2+ sensitivity and block.
    Rusko J; Tanzi F; van Breemen C; Adams DJ
    J Physiol; 1992 Sep; 455():601-21. PubMed ID: 1484364
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Voltage-activation of high-conductance K+ channel in the insulin-secreting cell line RINm5F is dependent on local extracellular Ca2+ concentration.
    Velasco JM; Petersen OH
    Biochim Biophys Acta; 1987 Jan; 896(2):305-10. PubMed ID: 2432936
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The mechanism of action of Ba2+ and TEA on single Ca2+-activated K+ -channels in arterial and intestinal smooth muscle cell membranes.
    Benham CD; Bolton TB; Lang RJ; Takewaki T
    Pflugers Arch; 1985 Feb; 403(2):120-7. PubMed ID: 2580269
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Apical membrane potassium conductance in guinea pig gallbladder epithelial cells.
    Gunter-Smith PJ
    Am J Physiol; 1988 Dec; 255(6 Pt 1):C808-15. PubMed ID: 3202150
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Ca2+ sensitivity of volume-regulatory K+ and Cl- channels in cultured human epithelial cells.
    Hazama A; Okada Y
    J Physiol; 1988 Aug; 402():687-702. PubMed ID: 2466988
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Cell swelling activates K+ and Cl- channels as well as nonselective, stretch-activated cation channels in Ehrlich ascites tumor cells.
    Christensen O; Hoffmann EK
    J Membr Biol; 1992 Jul; 129(1):13-36. PubMed ID: 1383549
    [TBL] [Abstract][Full Text] [Related]  

  • 70. K channels of human alveolar macrophages.
    Kakuta Y; Okayama H; Aikawa T; Kanno T; Ohyama T; Sasaki H; Kato T; Takishima T
    J Allergy Clin Immunol; 1988 Feb; 81(2):460-8. PubMed ID: 2448360
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Modulation of K+ and Ca2+ channels by histamine H1-receptor stimulation in rabbit coronary artery cells.
    Ishikawa T; Hume JR; Keef KD
    J Physiol; 1993 Aug; 468():379-400. PubMed ID: 7504729
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Ca(2+)-dependent K+ channels of high conductance in smooth muscle cells isolated from rat cerebral arteries.
    Wang Y; Mathers DA
    J Physiol; 1993 Mar; 462():529-45. PubMed ID: 8331591
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Regulation of K+ channels in the basolateral membrane of Necturus oxyntic cells.
    Ueda S; Loo DD; Sachs G
    J Membr Biol; 1987; 97(1):31-41. PubMed ID: 2441066
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Biophysical and pharmacological properties of large conductance Ca(2+)-activated K+ channels in N1E-115 cells.
    Diserbo M; Antonny B; Verdetti J
    Biochem Biophys Res Commun; 1994 Nov; 205(1):596-602. PubMed ID: 7999085
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Characteristics of two basolateral potassium channel populations in human colonic crypts.
    Lomax RB; Warhurst G; Sandle GI
    Gut; 1996 Feb; 38(2):243-7. PubMed ID: 8801205
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Electrophysiological characterization of the rat epithelial Na+ channel (rENaC) expressed in MDCK cells. Effects of Na+ and Ca2+.
    Ishikawa T; Marunaka Y; Rotin D
    J Gen Physiol; 1998 Jun; 111(6):825-46. PubMed ID: 9607939
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Excitation-secretion coupling: ionic currents in glomerulosa cells: effects of adrenocorticotropin and K+ channel blockers.
    Payet MD; Benabderrazik M; Gallo-Payet N
    Endocrinology; 1987 Sep; 121(3):875-82. PubMed ID: 2441982
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Characterization of membrane currents in single smooth muscle cells from the guinea-pig gastric antrum.
    Noack T; Deitmer P; Lammel E
    J Physiol; 1992; 451():387-417. PubMed ID: 1383498
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Membrane current responses of NG108-15 mouse neuroblastoma x rat glioma hybrid cells to bradykinin.
    Brown DA; Higashida H
    J Physiol; 1988 Mar; 397():167-84. PubMed ID: 2457696
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Two types of K(+) channels are present in the apical membrane of the thick ascending limb of the mouse kidney.
    Lu M; Wang W
    Kidney Blood Press Res; 2000; 23(2):75-82. PubMed ID: 10765108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.