These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 24410682)

  • 1. Standardization of the reducing power of zero-valent iron using iodine.
    Kim H; Yang H; Kim J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(5):514-23. PubMed ID: 24410682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Batch-test study on the dechlorination of 1,1,1-trichloroethane in contaminated aquifer material by zero-valent iron.
    Lookman R; Bastiaens L; Borremans B; Maesen M; Gemoets J; Diels L
    J Contam Hydrol; 2004 Oct; 74(1-4):133-44. PubMed ID: 15358490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic effect of cationic surfactants on perchloroethylene degradation by zero-valent iron.
    Alessi DS; Li Z
    Environ Sci Technol; 2001 Sep; 35(18):3713-7. PubMed ID: 11783650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactions of chlorinated ethenes with surface-sulfidated iron materials: reactivity enhancement and inhibition effects.
    Islam S; Han Y; Yan W
    Environ Sci Process Impacts; 2020 Mar; 22(3):759-770. PubMed ID: 32073089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical depassivation of zero-valent iron for trichloroethene reduction.
    Chen L; Jin S; Fallgren PH; Swoboda-Colberg NG; Liu F; Colberg PJ
    J Hazard Mater; 2012 Nov; 239-240():265-9. PubMed ID: 23009798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effects of reaction conditions.
    Song H; Carraway ER
    Environ Sci Technol; 2005 Aug; 39(16):6237-45. PubMed ID: 16173587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of PCE, TCE and 1,1,1-TCA by nanosized FePd bimetallic particles under various experimental conditions.
    Cho Y; Choi SI
    Chemosphere; 2010 Nov; 81(7):940-5. PubMed ID: 20723967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ remediation of chlorinated solvent-contaminated groundwater using ZVI/organic carbon amendment in China: field pilot test and full-scale application.
    Yang J; Meng L; Guo L
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5051-5062. PubMed ID: 28819708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of iron surface pretreatment on sorption and reduction kinetics of trichloroethylene in a closed batch system.
    Jung Lin C; Lo SL
    Water Res; 2005 Mar; 39(6):1037-46. PubMed ID: 15766958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zero-valent iron pretreatment for detoxifying iodine in liquid crystal display (LCD) manufacturing wastewater.
    Lee JW; Cha DK; Oh YK; Ko KB; Song JS
    J Hazard Mater; 2009 May; 164(1):67-72. PubMed ID: 18799266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Horizontal permeable reactive barriers with zero-valent iron for preventing upward diffusion of chlorinated solvent vapors in the unsaturated zone.
    Zingaretti D; Verginelli I; Luisetto I; Baciocchi R
    J Contam Hydrol; 2020 Oct; 234():103687. PubMed ID: 32717569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of chlorinated organic solvents in aqueous percarbonate system using zeolite supported nano zero valent iron (Z-nZVI) composite.
    Danish M; Gu X; Lu S; Naqvi M
    Environ Sci Pollut Res Int; 2016 Jul; 23(13):13298-307. PubMed ID: 27023817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The specific reactive surface area of granular zero-valent iron in metal contaminant removal: Column experiments and modelling.
    Statham TM; Mason LR; Mumford KA; Stevens GW
    Water Res; 2015 Jun; 77():24-34. PubMed ID: 25839833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable synthesis and immobilization of zero-valent iron nanoparticles for environmental applications.
    Huang Q; Shi X; Pinto RA; Petersen EJ; Weber WJ
    Environ Sci Technol; 2008 Dec; 42(23):8884-9. PubMed ID: 19192813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of rate constants and branching ratios for TCE degradation by zero-valent iron using a chain decay multispecies model.
    Hwang HT; Jeen SW; Sudicky EA; Illman WA
    J Contam Hydrol; 2015; 177-178():43-53. PubMed ID: 25827100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A shift in pathway of iron-mediated perchloroethylene reduction in the presence of sorbed surfactant--a column study.
    Li Z; Willms C; Alley J; Zhang P; Bowman RS
    Water Res; 2006 Dec; 40(20):3811-9. PubMed ID: 17055029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. C, Cl and H compound-specific isotope analysis to assess natural versus Fe(0) barrier-induced degradation of chlorinated ethenes at a contaminated site.
    Audí-Miró C; Cretnik S; Torrentó C; Rosell M; Shouakar-Stash O; Otero N; Palau J; Elsner M; Soler A
    J Hazard Mater; 2015 Dec; 299():747-54. PubMed ID: 26248540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous Transformation of Commingled Trichloroethylene, Tetrachloroethylene, and 1,4-Dioxane by a Microbially Driven Fenton Reaction in Batch Liquid Cultures.
    Sekar R; Taillefert M; DiChristina TJ
    Appl Environ Microbiol; 2016 Nov; 82(21):6335-6343. PubMed ID: 27542932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of ferrous ions on the reductive dechlorination of trichloroethylene by zero-valent iron.
    Liu CC; Tseng DH; Wang CY
    J Hazard Mater; 2006 Aug; 136(3):706-13. PubMed ID: 16504392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reductive dechlorination of organochlorine pesticides in soils from an abandoned manufacturing facility by zero-valent iron.
    Cong X; Xue N; Wang S; Li K; Li F
    Sci Total Environ; 2010 Jul; 408(16):3418-23. PubMed ID: 20471666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.