These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 24410719)

  • 1. Catalyst-controlled Wacker-type oxidation: facile access to functionalized aldehydes.
    Wickens ZK; Skakuj K; Morandi B; Grubbs RH
    J Am Chem Soc; 2014 Jan; 136(3):890-3. PubMed ID: 24410719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aldehyde-selective Wacker-type oxidation of unbiased alkenes enabled by a nitrite co-catalyst.
    Wickens ZK; Morandi B; Grubbs RH
    Angew Chem Int Ed Engl; 2013 Oct; 52(43):11257-60. PubMed ID: 24039135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic Anti-Markovnikov Transformations of Hindered Terminal Alkenes Enabled by Aldehyde-Selective Wacker-Type Oxidation.
    Kim KE; Li J; Grubbs RH; Stoltz BM
    J Am Chem Soc; 2016 Oct; 138(40):13179-13182. PubMed ID: 27670712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Access to β-Fluorinated Aldehydes by Nitrite-Modified Wacker Oxidation.
    Chu CK; Ziegler DT; Carr B; Wickens ZK; Grubbs RH
    Angew Chem Int Ed Engl; 2016 Jul; 55(29):8435-9. PubMed ID: 27225538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Palladium-catalyzed anti-Markovnikov oxidation of terminal alkenes.
    Dong JJ; Browne WR; Feringa BL
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):734-44. PubMed ID: 25367376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient and highly aldehyde selective Wacker oxidation.
    Teo P; Wickens ZK; Dong G; Grubbs RH
    Org Lett; 2012 Jul; 14(13):3237-9. PubMed ID: 22694293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Realization of Anti-Markovnikov Selectivity in Pd-Catalyzed Oxidative Acetalization and Wacker-Type Oxidation of Terminal Alkenes.
    Ura Y
    Chem Rec; 2021 Dec; 21(12):3458-3469. PubMed ID: 34021681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wacker Oxidation of Methylenecyclobutanes: Scope and Selectivity in an Unusual Setting.
    Sietmann J; Tenberge M; Wahl JM
    Angew Chem Int Ed Engl; 2023 Feb; 62(7):e202215381. PubMed ID: 36416612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aldehyde selective Wacker oxidations of phthalimide protected allylic amines: a new catalytic route to beta3-amino acids.
    Weiner B; Baeza A; Jerphagnon T; Feringa BL
    J Am Chem Soc; 2009 Jul; 131(27):9473-4. PubMed ID: 19583430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The direct and enantioselective organocatalytic alpha-oxidation of aldehydes.
    Brown SP; Brochu MP; Sinz CJ; MacMillan DW
    J Am Chem Soc; 2003 Sep; 125(36):10808-9. PubMed ID: 12952459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel anti-Markovnikov regioselectivity in the Wacker reaction of styrenes.
    Wright JA; Gaunt MJ; Spencer JB
    Chemistry; 2006 Jan; 12(3):949-55. PubMed ID: 16144020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric Markovnikov Hydroaminocarbonylation of Alkenes Enabled by Palladium-Monodentate Phosphoramidite Catalysis.
    Yao YH; Yang HY; Chen M; Wu F; Xu XX; Guan ZH
    J Am Chem Soc; 2021 Jan; 143(1):85-91. PubMed ID: 33373216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The diarylprolinol silyl ether system: a general organocatalyst.
    Jensen KL; Dickmeiss G; Jiang H; Albrecht L; Jørgensen KA
    Acc Chem Res; 2012 Feb; 45(2):248-64. PubMed ID: 21848275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maleimide-assisted anti-Markovnikov Wacker-type oxidation of vinylarenes using molecular oxygen as a terminal oxidant.
    Nakaoka S; Murakami Y; Kataoka Y; Ura Y
    Chem Commun (Camb); 2016 Jan; 52(2):335-8. PubMed ID: 26514316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New catalytic asymmetric strategies to access chiral aldehydes.
    Mazet C
    Chimia (Aarau); 2011; 65(10):802-5. PubMed ID: 22054135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective photocatalytic oxidation of alcohols to aldehydes in water by TiO2 partially coated with WO3.
    Tsukamoto D; Ikeda M; Shiraishi Y; Hara T; Ichikuni N; Tanaka S; Hirai T
    Chemistry; 2011 Aug; 17(35):9816-24. PubMed ID: 21735494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regioselective alkene carbon-carbon bond cleavage to aldehydes and chemoselective alcohol oxidation of allylic alcohols with hydrogen peroxide catalyzed by [cis-Ru(II)(dmp)2(H2O)2]2+ (dmp = 2,9-dimethylphenanthroline).
    Kogan V; Quintal MM; Neumann R
    Org Lett; 2005 Oct; 7(22):5039-42. PubMed ID: 16235952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative selective oxidation pathways for aldehyde oxidation and alkene epoxidation on a SiO2-supported Ru-monomer complex catalyst.
    Tada M; Muratsugu S; Kinoshita M; Sasaki T; Iwasawa Y
    J Am Chem Soc; 2010 Jan; 132(2):713-24. PubMed ID: 20000837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. tert-Butyl Nitrite: Organic Redox Cocatalyst for Aerobic Aldehyde-Selective Wacker-Tsuji Oxidation.
    Ning XS; Wang MM; Yao CZ; Chen XM; Kang YB
    Org Lett; 2016 Jun; 18(11):2700-3. PubMed ID: 27191227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water-Soluble Pd Nanoparticles for the Anti-Markovnikov Oxidation of Allyl Benzene in Water.
    Avila E; Nixarlidis C; Shon YS
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.