These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 24410948)

  • 21. Real-time simultaneous and proportional myoelectric control using intramuscular EMG.
    Smith LH; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Dec; 11(6):066013. PubMed ID: 25394366
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Motion recognition for simultaneous control of multifunctional transradial prostheses.
    Jiang N; Tian L; Fang P; Dai Y; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1603-6. PubMed ID: 24110009
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements.
    Krasoulis A; Kyranou I; Erden MS; Nazarpour K; Vijayakumar S
    J Neuroeng Rehabil; 2017 Jul; 14(1):71. PubMed ID: 28697795
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Real-time simultaneous myoelectric control by transradial amputees using linear and probability-weighted regression.
    Smith LH; Kuiken TA; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1119-23. PubMed ID: 26736462
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selection of sampling rate for EMG pattern recognition based prosthesis control.
    Li G; Li Y; Zhang Z; Geng Y; Zhou R
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5058-61. PubMed ID: 21096026
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of Linear Regression Simultaneous Myoelectric Control Using Intramuscular EMG.
    Smith LH; Kuiken TA; Hargrove LJ
    IEEE Trans Biomed Eng; 2016 Apr; 63(4):737-46. PubMed ID: 26302506
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A state-based, proportional myoelectric control method: online validation and comparison with the clinical state-of-the-art.
    Jiang N; Lorrain T; Farina D
    J Neuroeng Rehabil; 2014 Jul; 11():110. PubMed ID: 25012766
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluating the Ability of Congenital Upper Extremity Amputees to Control a Multi-Degree of Freedom Myoelectric Prosthesis.
    Kaluf B; Gart MS; Loeffler BJ; Gaston G
    J Hand Surg Am; 2022 Oct; 47(10):1019.e1-1019.e9. PubMed ID: 34657765
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phantom-Mobility-Based Prosthesis Control in Transhumeral Amputees Without Surgical Reinnervation: A Preliminary Study.
    Jarrassé N; de Montalivet E; Richer F; Nicol C; Touillet A; Martinet N; Paysant J; de Graaf JB
    Front Bioeng Biotechnol; 2018; 6():164. PubMed ID: 30555823
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous Control of 2DOF Upper-Limb Prosthesis With Body Compensations-Based Control: A Multiple Cases Study.
    Legrand M; Marchand C; Richer F; Touillet A; Martinet N; Paysant J; Morel G; Jarrasse N
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1745-1754. PubMed ID: 35749322
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Multi-Class Proportional Myocontrol Algorithm for Upper Limb Prosthesis Control: Validation in Real-Life Scenarios on Amputees.
    Amsuess S; Goebel P; Graimann B; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):827-36. PubMed ID: 25296406
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Context-Dependent Upper Limb Prosthesis Control for Natural and Robust Use.
    Amsuess S; Vujaklija I; Goebel P; Roche AD; Graimann B; Aszmann OC; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jul; 24(7):744-53. PubMed ID: 26173217
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A control system for a powered prosthesis using positional and myoelectric inputs from the shoulder complex.
    Losier Y; Englehart K; Hudgins B
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6138-41. PubMed ID: 18003416
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conditioning and sampling issues of EMG signals in motion recognition of multifunctional myoelectric prostheses.
    Li G; Li Y; Yu L; Geng Y
    Ann Biomed Eng; 2011 Jun; 39(6):1779-87. PubMed ID: 21293972
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeted muscle reinnervation to improve electromyography signals for advanced myoelectric prosthetic limbs: a series of seven patients.
    Myers H; Lu D; Gray SJ; Bruscino-Raiola F
    ANZ J Surg; 2020 Apr; 90(4):591-596. PubMed ID: 31989741
    [TBL] [Abstract][Full Text] [Related]  

  • 36. EMG pattern recognition control of multifunctional prostheses by transradial amputees.
    Li G; Kuiken TA
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6914-7. PubMed ID: 19964455
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Myoelectric Control Performance of Two Degree of Freedom Hand-Wrist Prosthesis by Able-Bodied and Limb-Absent Subjects.
    Zhu Z; Li J; Boyd WJ; Martinez-Luna C; Dai C; Wang H; Wang H; Huang X; Farrell TR; Clancy EA
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():893-904. PubMed ID: 35349446
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantifying pattern recognition-based myoelectric control of multifunctional transradial prostheses.
    Li G; Schultz AE; Kuiken TA
    IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):185-92. PubMed ID: 20071269
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pattern recognition control outperforms conventional myoelectric control in upper limb patients with targeted muscle reinnervation.
    Hargrove LJ; Lock BA; Simon AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1599-602. PubMed ID: 24110008
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Myoelectric training systems.
    Dawson MR; Carey JP; Fahimi F
    Expert Rev Med Devices; 2011 Sep; 8(5):581-9. PubMed ID: 22026623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.