These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 24411098)

  • 1. The effect of lateral eccentricity on failure loads, kinematics, and canal occlusions of the cervical spine in axial loading.
    Van Toen C; Melnyk AD; Street J; Oxland TR; Cripton PA
    J Biomech; 2014 Mar; 47(5):1164-72. PubMed ID: 24411098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of end condition on spine segment biomechanics in compression with lateral eccentricity.
    Melnyk A; Whyte T; Van Toen C; Yamamoto S; Street J; Oxland TR; Cripton PA
    J Biomech; 2021 Nov; 128():110617. PubMed ID: 34628202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cervical spine injuries and flexibilities following axial impact with lateral eccentricity.
    Van Toen C; Street J; Oxland TR; Cripton PA
    Eur Spine J; 2015 Jan; 24(1):136-47. PubMed ID: 25344091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effect of Compression Applied Through Constrained Lateral Eccentricity on the Failure Mechanics and Flexibility of the Human Cervical Spine.
    Melnyk A; Whyte T; Thomson V; Marion T; Yamamoto S; Street J; Oxland TR; Cripton PA
    J Biomech Eng; 2020 Oct; 142(10):. PubMed ID: 32451551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural space integrity of the lower cervical spine: effect of normal range of motion.
    Nuckley DJ; Konodi MA; Raynak GC; Ching RP; Mirza SK
    Spine (Phila Pa 1976); 2002 Mar; 27(6):587-95. PubMed ID: 11884906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of age and injury mechanism on cervical spine injury tolerance from head contact loading.
    Yoganandan N; Chirvi S; Voo L; Pintar FA; Banerjee A
    Traffic Inj Prev; 2018 Feb; 19(2):165-172. PubMed ID: 28738168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward a more robust lower neck compressive injury tolerance-an approach combining multiple test methodologies.
    Toomey DE; Yang KH; Yoganandan N; Pintar FA; Van Ee CA
    Traffic Inj Prev; 2013; 14(8):845-52. PubMed ID: 24073773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moment measurements in dynamic and quasi-static spine segment testing using eccentric compression are susceptible to artifacts based on loading configuration.
    Van Toen C; Carter JW; Oxland TR; Cripton PA
    J Biomech Eng; 2014 Dec; 136(12):124505. PubMed ID: 25322158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relevance of using a compressive preload in the cervical spine: an experimental and numerical simulating investigation.
    Barrey C; Rousseau MA; Persohn S; Campana S; Perrin G; Skalli W
    Eur J Orthop Surg Traumatol; 2015 Jul; 25 Suppl 1():S155-65. PubMed ID: 25845316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A neck compression injury criterion incorporating lateral eccentricity.
    Whyte T; Melnyk AD; Van Toen C; Yamamoto S; Street J; Oxland TR; Cripton PA
    Sci Rep; 2020 Apr; 10(1):7114. PubMed ID: 32346007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of post-injury spinal position on canal occlusion in a cervical spine burst fracture model.
    Ching RP; Watson NA; Carter JW; Tencer AF
    Spine (Phila Pa 1976); 1997 Aug; 22(15):1710-5. PubMed ID: 9259780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural space and biomechanical integrity of the developing cervical spine in compression.
    Nuckley DJ; Van Nausdle JA; Eck MP; Ching RP
    Spine (Phila Pa 1976); 2007 Mar; 32(6):E181-7. PubMed ID: 17413458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Canal geometry changes associated with axial compressive cervical spine fracture.
    Carter JW; Mirza SK; Tencer AF; Ching RP
    Spine (Phila Pa 1976); 2000 Jan; 25(1):46-54. PubMed ID: 10647160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinematics of the cervical spine canal: changes with sagittal plane loads.
    Chen IH; Vasavada A; Panjabi MM
    J Spinal Disord; 1994 Apr; 7(2):93-101. PubMed ID: 8003838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method to simulate in vivo cervical spine kinematics using in vitro compressive preload.
    Miura T; Panjabi MM; Cripton PA
    Spine (Phila Pa 1976); 2002 Jan; 27(1):43-8. PubMed ID: 11805634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ProDisc cervical arthroplasty does not alter facet joint contact pressure during lateral bending or axial torsion.
    Jaumard NV; Bauman JA; Guarino BB; Gokhale AJ; Lipschutz DE; Weisshaar CL; Welch WC; Winkelstein BA
    Spine (Phila Pa 1976); 2013 Jan; 38(2):E84-93. PubMed ID: 23132537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Load-Sharing and Kinematics of the Human Cervical Spine Under Multi-Axial Transverse Shear Loading: Combined Experimental and Computational Investigation.
    Whyte T; Barker JB; Cronin DS; Dumas GA; Nolte LP; Cripton PA
    J Biomech Eng; 2021 Jun; 143(6):. PubMed ID: 33537737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo three-dimensional intervertebral kinematics of the subaxial cervical spine during seated axial rotation and lateral bending via a fluoroscopy-to-CT registration approach.
    Lin CC; Lu TW; Wang TM; Hsu CY; Hsu SJ; Shih TF
    J Biomech; 2014 Oct; 47(13):3310-7. PubMed ID: 25218506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical comparison of single- and two-level cervical arthroplasty versus arthrodesis: effect on adjacent-level spinal kinematics.
    Cunningham BW; Hu N; Zorn CM; McAfee PC
    Spine J; 2010 Apr; 10(4):341-9. PubMed ID: 20362252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship between lower neck shear force and facet joint kinematics during automotive rear impacts.
    Stemper BD; Yoganandan N; Pintar FA; Maiman DJ
    Clin Anat; 2011 Apr; 24(3):319-26. PubMed ID: 21433081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.