These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 24411305)

  • 1. The study of marine corrosion of copper alloys in chlorinated condenser cooling circuits: the role of microbiological components.
    Carvalho ML; Doma J; Sztyler M; Beech I; Cristiani P
    Bioelectrochemistry; 2014 Jun; 97():2-6. PubMed ID: 24411305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antifouling strategies and corrosion control in cooling circuits.
    Cristiani P; Perboni G
    Bioelectrochemistry; 2014 Jun; 97():120-6. PubMed ID: 24507969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polystyrene films as barrier layers for corrosion protection of copper and copper alloys.
    Románszki L; Datsenko I; May Z; Telegdi J; Nyikos L; Sand W
    Bioelectrochemistry; 2014 Jun; 97():7-14. PubMed ID: 24239277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influences of macrosegregation, intermetallic particles, and dendritic spacing on the electrochemical behavior of hypoeutectic Al-Cu alloys.
    Osório WR; Spinelli JE; Boeira AP; Freire CM; Garcia A
    Microsc Res Tech; 2007 Nov; 70(11):928-37. PubMed ID: 17661364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of protein adsorption on the corrosion behavior of 70Cu-30Ni alloy in artificial seawater.
    Torres Bautista BE; Carvalho ML; Seyeux A; Zanna S; Cristiani P; Tribollet B; Marcus P; Frateur I
    Bioelectrochemistry; 2014 Jun; 97():34-42. PubMed ID: 24177137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro and in vivo corrosion evaluation of nickel-chromium- and copper-aluminum-based alloys.
    Benatti OF; Miranda WG; Muench A
    J Prosthet Dent; 2000 Sep; 84(3):360-3. PubMed ID: 11005911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of proteases secreted from a marine isolated bacterium Bacillus vietnamensis on the corrosion behaviour of different alloys.
    Moradi M; Sun Z; Song Z; Hu H
    Bioelectrochemistry; 2019 Apr; 126():64-71. PubMed ID: 30521989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface functionalization of Cu-Ni alloys via grafting of a bactericidal polymer for inhibiting biocorrosion by Desulfovibrio desulfuricans in anaerobic seawater.
    Yuan SJ; Liu CK; Pehkonen SO; Bai RB; Neoh KG; Ting YP; Kang ET
    Biofouling; 2009; 25(2):109-25. PubMed ID: 19021016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Corrosion of dental titanium alloys binary system of Ti-Al, Ti-Cu, Ti-Ni].
    Oda Y; Funasaka M; Sumii T
    Shika Zairyo Kikai; 1990 Mar; 9(2):314-9. PubMed ID: 2135523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocorrosion inhibition of Cu70:Ni30 by Bacillus subtilis strain S1X and Pseudomonas aeruginosa strain ZK biofilms.
    Wadood HZ; Rajasekar A; Farooq A; Ting YP; Sabri AN
    J Basic Microbiol; 2020 Mar; 60(3):243-252. PubMed ID: 31840841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic biodegradation of biofuels and their impact on the corrosion of a Cu-Ni alloy in marine environments.
    Liang R; Aydin E; Le Borgne S; Sunner J; Duncan KE; Suflita JM
    Chemosphere; 2018 Mar; 195():427-436. PubMed ID: 29274988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical and histomorphometric evaluation of the TiNiCu shape memory alloy.
    Wen X; Zhang N; Li X; Cao Z
    Biomed Mater Eng; 1997; 7(1):1-11. PubMed ID: 9171899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Microbiological corrosion of aluminum alloys].
    Smirnov VF; Belov DV; Sokolova TN; Kuzina OV; Kartashov VR
    Prikl Biokhim Mikrobiol; 2008; 44(2):213-8. PubMed ID: 18669265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibacterial copper-nickel bilayers and multilayer coatings by pulsed laser deposition on titanium.
    Vishwakarma V; Josephine J; George RP; Krishnan R; Dash S; Kamruddin M; Kalavathi S; Manoharan N; Tyagi AK; Dayal RK
    Biofouling; 2009 Nov; 25(8):705-10. PubMed ID: 20183129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of pitting corrosion inhibition effect on aluminum alloy in seawater by biomineralized film.
    Shen Y; Dong Y; Yang Y; Li Q; Zhu H; Zhang W; Dong L; Yin Y
    Bioelectrochemistry; 2020 Apr; 132():107408. PubMed ID: 31816577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corrosion and runoff rates of Cu and three Cu-alloys in marine environments with increasing chloride deposition rate.
    Odnevall Wallinder I; Zhang X; Goidanich S; Le Bozec N; Herting G; Leygraf C
    Sci Total Environ; 2014 Feb; 472():681-94. PubMed ID: 24321319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corrosion of low carbon steel by microorganisms from the 'pigging' operation debris in water injection pipelines.
    Cote C; Rosas O; Sztyler M; Doma J; Beech I; Basseguy R
    Bioelectrochemistry; 2014 Jun; 97():97-109. PubMed ID: 24355513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular methods resolve the bacterial composition of natural marine biofilms on galvanically coupled stainless steel cathodes.
    Oldham AL; Steinberg MK; Duncan KE; Makama Z; Beech I
    J Ind Microbiol Biotechnol; 2017 Feb; 44(2):167-180. PubMed ID: 28013395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of biofilms in the corrosion of steel in marine environments.
    Procópio L
    World J Microbiol Biotechnol; 2019 Apr; 35(5):73. PubMed ID: 31037431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of fingerprint sweat corrosion of different alloys of brass.
    Sykes S; Bond JW
    J Forensic Sci; 2013 Jan; 58(1):138-41. PubMed ID: 23009034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.