These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 24411306)
1. Changing electrode orientation, but not pulse polarity, increases the efficacy of gene electrotransfer to tumors in vivo. Todorovic V; Kamensek U; Sersa G; Cemazar M Bioelectrochemistry; 2014 Dec; 100():119-27. PubMed ID: 24411306 [TBL] [Abstract][Full Text] [Related]
2. Control by pulse parameters of DNA electrotransfer into solid tumors in mice. Cemazar M; Golzio M; Sersa G; Hojman P; Kranjc S; Mesojednik S; Rols MP; Teissie J Gene Ther; 2009 May; 16(5):635-44. PubMed ID: 19212425 [TBL] [Abstract][Full Text] [Related]
3. Gene electrotransfer into murine skeletal muscle: a systematic analysis of parameters for long-term gene expression. Tevz G; Pavlin D; Kamensek U; Kranjc S; Mesojednik S; Coer A; Sersa G; Cemazar M Technol Cancer Res Treat; 2008 Apr; 7(2):91-101. PubMed ID: 18345697 [TBL] [Abstract][Full Text] [Related]
4. Electroporator with automatic change of electric field direction improves gene electrotransfer in-vitro. Rebersek M; Faurie C; Kanduser M; Corović S; Teissié J; Rols MP; Miklavcic D Biomed Eng Online; 2007 Jul; 6():25. PubMed ID: 17601347 [TBL] [Abstract][Full Text] [Related]
5. Direct visualization of electroporation-assisted in vivo gene delivery to tumors using intravital microscopy - spatial and time dependent distribution. Cemazar M; Wilson I; Dachs GU; Tozer GM; Sersa G BMC Cancer; 2004 Nov; 4():81. PubMed ID: 15546484 [TBL] [Abstract][Full Text] [Related]
6. Changing the direction and orientation of electric field during electric pulses application improves plasmid gene transfer in vitro. Pavlin M; Haberl SA; Rebersek M; Miklavcic D; Kanduser M J Vis Exp; 2011 Sep; (55):. PubMed ID: 21931297 [TBL] [Abstract][Full Text] [Related]
7. Influence of plasmid concentration on DNA electrotransfer in vitro using high-voltage and low-voltage pulses. Cepurniene K; Ruzgys P; Treinys R; Satkauskiene I; Satkauskas S J Membr Biol; 2010 Jul; 236(1):81-5. PubMed ID: 20623115 [TBL] [Abstract][Full Text] [Related]
8. Electrotransfer of gene encoding endostatin into normal and neoplastic mouse tissues: inhibition of primary tumor growth and metastatic spread. Cichoń T; Jamrozy L; Glogowska J; Missol-Kolka E; Szala S Cancer Gene Ther; 2002 Sep; 9(9):771-7. PubMed ID: 12189527 [TBL] [Abstract][Full Text] [Related]
9. Hyaluronidase and collagenase increase the transfection efficiency of gene electrotransfer in various murine tumors. Cemazar M; Golzio M; Sersa G; Escoffre JM; Coer A; Vidic S; Teissie J Hum Gene Ther; 2012 Jan; 23(1):128-37. PubMed ID: 21797718 [TBL] [Abstract][Full Text] [Related]
10. Efficacy of transgene expression in porcine skin as a function of electrode choice. Gothelf A; Mahmood F; Dagnaes-Hansen F; Gehl J Bioelectrochemistry; 2011 Oct; 82(2):95-102. PubMed ID: 21724474 [TBL] [Abstract][Full Text] [Related]
11. Electrophoretic component of electric pulses determines the efficacy of in vivo DNA electrotransfer. Satkauskas S; André F; Bureau MF; Scherman D; Miklavcic D; Mir LM Hum Gene Ther; 2005 Oct; 16(10):1194-201. PubMed ID: 16218780 [TBL] [Abstract][Full Text] [Related]
12. Numerical study of gene electrotransfer efficiency based on electroporation volume and electrophoretic movement of plasmid DNA. Forjanič T; Miklavčič D Biomed Eng Online; 2018 Jun; 17(1):80. PubMed ID: 29914508 [TBL] [Abstract][Full Text] [Related]
13. Effect of different parameters used for in vitro gene electrotransfer on gene expression efficiency, cell viability and visualization of plasmid DNA at the membrane level. Haberl S; Kandušer M; Flisar K; Hodžić D; Bregar VB; Miklavčič D; Escoffre JM; Rols MP; Pavlin M J Gene Med; 2013 May; 15(5):169-81. PubMed ID: 23564663 [TBL] [Abstract][Full Text] [Related]
14. Effective gene transfer to solid tumors using different nonviral gene delivery techniques: electroporation, liposomes, and integrin-targeted vector. Cemazar M; Sersa G; Wilson J; Tozer GM; Hart SL; Grosel A; Dachs GU Cancer Gene Ther; 2002 Apr; 9(4):399-406. PubMed ID: 11960291 [TBL] [Abstract][Full Text] [Related]
15. Investigating relationship between transfection and permeabilization by the electric field and/or the Pluronic® L64 in vitro and in vivo. Bureau MF; Wasungu L; Jugé L; Scherman D; Rols MP; Mignet N J Gene Med; 2012 Mar; 14(3):204-15. PubMed ID: 22328073 [TBL] [Abstract][Full Text] [Related]
17. DNA electrotransfer into the skin using a combination of one high- and one low-voltage pulse. Pavselj N; Préat V J Control Release; 2005 Sep; 106(3):407-15. PubMed ID: 15982778 [TBL] [Abstract][Full Text] [Related]
18. Cell and animal imaging of electrically mediated gene transfer. Faurie C; Golzio M; Moller P; Teissié J; Rols MP DNA Cell Biol; 2003 Dec; 22(12):777-83. PubMed ID: 14683588 [TBL] [Abstract][Full Text] [Related]
19. Simulation and experimental demonstration of the electric field assisted electroporation microchip for in vitro gene delivery enhancement. Lin YC; Li M; Wu CC Lab Chip; 2004 Apr; 4(2):104-8. PubMed ID: 15052348 [TBL] [Abstract][Full Text] [Related]
20. Real time electroporation control for accurate and safe in vivo non-viral gene therapy. Cukjati D; Batiuskaite D; André F; Miklavcic D; Mir LM Bioelectrochemistry; 2007 May; 70(2):501-7. PubMed ID: 17258942 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]