These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 24411308)
41. Relative quantitative PCR to assess bacterial community dynamics during biodegradation of diesel and biodiesel fuels under various aeration conditions. Cyplik P; Schmidt M; Szulc A; Marecik R; Lisiecki P; Heipieper HJ; Owsianiak M; Vainshtein M; Chrzanowski Ł Bioresour Technol; 2011 Mar; 102(6):4347-52. PubMed ID: 21239170 [TBL] [Abstract][Full Text] [Related]
42. Effect of energy deprivation on metabolite release by anaerobic marine naphthalene-degrading sulfate-reducing bacteria. Chen G; Widdel F; Musat F Environ Microbiol; 2020 Sep; 22(9):4057-4066. PubMed ID: 32783260 [TBL] [Abstract][Full Text] [Related]
43. An overview of mechanisms by which sulphate-reducing bacteria influence corrosion of steel in marine environments. Videla HA Biofouling; 2000; 15(1-3):37-47. PubMed ID: 22115290 [TBL] [Abstract][Full Text] [Related]
44. SRB-mediated corrosion of marine submerged AISI 1020 steel under impressed current cathodic protection. Liduino V; Galvão M; Brasil S; Sérvulo E Colloids Surf B Biointerfaces; 2021 Jun; 202():111701. PubMed ID: 33756296 [TBL] [Abstract][Full Text] [Related]
45. Influence of hydrogen-oxidizing bacteria on the corrosion of low carbon steel: Local electrochemical investigations. Moreira R; Schütz MK; Libert M; Tribollet B; Vivier V Bioelectrochemistry; 2014 Jun; 97():69-75. PubMed ID: 24177135 [TBL] [Abstract][Full Text] [Related]
47. Mitigation of Desulfovibrio ferrophilus IS5 degradation of X80 carbon steel mechanical properties using a green biocide. Li Z; Yang J; Lu S; Dou W; Gu T Biodegradation; 2024 Jul; 35(4):439-449. PubMed ID: 38261083 [TBL] [Abstract][Full Text] [Related]
48. When material science meets microbial ecology: Bacterial community selection on stainless steels in natural seawater. Daille LK; Aguirre J; Anguita J; Galarce C; Caro-Lara L; Armijo F; Vargas IT; Pizarro G; Walczak M; De la Iglesia R Colloids Surf B Biointerfaces; 2023 Jan; 221():112955. PubMed ID: 36332310 [TBL] [Abstract][Full Text] [Related]
49. Marine Bacteria Provide Lasting Anticorrosion Activity for Steel via Biofilm-Induced Mineralization. Liu T; Guo Z; Zeng Z; Guo N; Lei Y; Liu T; Sun S; Chang X; Yin Y; Wang X ACS Appl Mater Interfaces; 2018 Nov; 10(46):40317-40327. PubMed ID: 30335931 [TBL] [Abstract][Full Text] [Related]
50. Antifouling strategies and corrosion control in cooling circuits. Cristiani P; Perboni G Bioelectrochemistry; 2014 Jun; 97():120-6. PubMed ID: 24507969 [TBL] [Abstract][Full Text] [Related]
51. An evaluation of microbial growth and corrosion of 316L SS in glycol/seawater mixtures. Lee JS; Ray RI; Lowe KL; Jones-Meehan J; Little BJ Biofouling; 2003 Apr; 19 Suppl():151-60. PubMed ID: 14618716 [TBL] [Abstract][Full Text] [Related]
52. Effects of marine eutrophication environment on microbial corrosion: A review. Guo D; Wang Y; Zhang Y; Duan J; Guan F; Hou B Mar Pollut Bull; 2024 Aug; 205():116637. PubMed ID: 38955090 [TBL] [Abstract][Full Text] [Related]
53. Radiorespirometric assays for the detection of biogenic sulfides from sulfate-reducing bacteria. de Queiroz JC; de Melo Ferreira AC; da Costa AC J Appl Microbiol; 2013 Apr; 114(4):1008-19. PubMed ID: 23289612 [TBL] [Abstract][Full Text] [Related]
54. Impact of iron-reducing bacteria on the corrosion rate of carbon steel under simulated geological disposal conditions. Schütz MK; Schlegel ML; Libert M; Bildstein O Environ Sci Technol; 2015 Jun; 49(12):7483-90. PubMed ID: 25988515 [TBL] [Abstract][Full Text] [Related]
55. From fields to fuels: recent advances in the microbial production of biofuels. Kung Y; Runguphan W; Keasling JD ACS Synth Biol; 2012 Nov; 1(11):498-513. PubMed ID: 23656227 [TBL] [Abstract][Full Text] [Related]
56. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
57. Microbial corrosion of stainless steel. Ibars JR; Moreno DA; Ranninger C Microbiologia; 1992 Nov; 8(2):63-75. PubMed ID: 1492953 [TBL] [Abstract][Full Text] [Related]
58. Naphthalene biodegradation in temperate and arctic marine microcosms. Bagi A; Pampanin DM; Lanzén A; Bilstad T; Kommedal R Biodegradation; 2014 Feb; 25(1):111-25. PubMed ID: 23624724 [TBL] [Abstract][Full Text] [Related]
59. Use of carbon steel ball bearings to determine the effect of biocides and corrosion inhibitors on microbiologically influenced corrosion under flow conditions. Pinnock T; Voordouw J; Voordouw G Appl Microbiol Biotechnol; 2018 Jul; 102(13):5741-5751. PubMed ID: 29749561 [TBL] [Abstract][Full Text] [Related]
60. Biodegradation of corrosion inhibitors and their influence on petroleum product pipeline. Rajasekar A; Maruthamuthu S; Palaniswamy N; Rajendran A Microbiol Res; 2007; 162(4):355-68. PubMed ID: 16580829 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]