These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 24411347)

  • 21. Engineered bio-nanocomposite magnesium scaffold for bone tissue regeneration.
    Parai R; Bandyopadhyay-Ghosh S
    J Mech Behav Biomed Mater; 2019 Aug; 96():45-52. PubMed ID: 31029994
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation and evaluation of cerium oxide-bovine hydroxyapatite composites for biomedical engineering applications.
    Gunduz O; Gode C; Ahmad Z; Gökçe H; Yetmez M; Kalkandelen C; Sahin YM; Oktar FN
    J Mech Behav Biomed Mater; 2014 Jul; 35():70-6. PubMed ID: 24747097
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel method to produce hydroxyapatite objects with interconnecting porosity that avoids sintering.
    Tadic D; Beckmann F; Schwarz K; Epple M
    Biomaterials; 2004 Jul; 25(16):3335-40. PubMed ID: 14980428
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of porous titanium implants by three-dimensional printing and sintering at different temperatures.
    Xiong Y; Qian C; Sun J
    Dent Mater J; 2012; 31(5):815-20. PubMed ID: 23037845
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Processing and mechanical behavior of lamellar structured degradable magnesium-hydroxyapatite implants.
    Ratna Sunil B; Ganapathy C; Sampath Kumar TS; Chakkingal U
    J Mech Behav Biomed Mater; 2014 Dec; 40():178-189. PubMed ID: 25241282
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphorus as sintering activator in powder metallurgical steels: characterization of the distribution and its technological impact.
    Krecar D; Vassileva V; Danninger H; Hutter H
    Anal Bioanal Chem; 2004 Jun; 379(4):610-8. PubMed ID: 15098083
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical surface modification of high-strength porous Ti compacts by spark plasma sintering.
    Sakamoto Y; Asaoka K; Kon M; Matsubara T; Yoshida K
    Biomed Mater Eng; 2006; 16(2):83-91. PubMed ID: 16477117
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Porous titanium manufactured by a novel powder tapping method using spherical salt bead space holders: Characterisation and mechanical properties.
    Jia J; Siddiq AR; Kennedy AR
    J Mech Behav Biomed Mater; 2015 Aug; 48():229-240. PubMed ID: 25957839
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of in vitro and in vivo biocompatibility of iron produced by powder metallurgy.
    Paim TC; Wermuth DP; Bertaco I; Zanatelli C; Naasani LIS; Slaviero M; Driemeier D; Schaeffer L; Wink MR
    Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():111129. PubMed ID: 32600726
    [TBL] [Abstract][Full Text] [Related]  

  • 30. X-ray photoelectron spectroscopy (XPS) investigation of the surface film on magnesium powders.
    Burke PJ; Bayindir Z; Kipouros GJ
    Appl Spectrosc; 2012 May; 66(5):510-8. PubMed ID: 22524956
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microstructure, mechanical properties and superelasticity of biomedical porous NiTi alloy prepared by microwave sintering.
    Xu JL; Bao LZ; Liu AH; Jin XJ; Tong YX; Luo JM; Zhong ZC; Zheng YF
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():387-93. PubMed ID: 25492002
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis and characterization of a novel open cellular Mg-based scaffold for tissue engineering application.
    Singh S; Vashisth P; Shrivastav A; Bhatnagar N
    J Mech Behav Biomed Mater; 2019 Jun; 94():54-62. PubMed ID: 30856480
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of the distribution of the sintering activator boron in powder metallurgical steels with SIMS.
    Krecar D; Vassileva V; Danninger H; Hutter H
    Anal Bioanal Chem; 2004 Jun; 379(4):605-9. PubMed ID: 15004734
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Properties of WZ21 (%wt) alloy processed by a powder metallurgy route.
    Cabeza S; Garcés G; Pérez P; Adeva P
    J Mech Behav Biomed Mater; 2015 Jun; 46():115-26. PubMed ID: 25792409
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MgF2-coated porous magnesium/alumina scaffolds with improved strength, corrosion resistance, and biological performance for biomedical applications.
    Kang MH; Jang TS; Kim SW; Park HS; Song J; Kim HE; Jung KH; Jung HD
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():634-42. PubMed ID: 26952467
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low-cost powder metallurgy Ti-Cu alloys as a potential antibacterial material.
    Alshammari Y; Yang F; Bolzoni L
    J Mech Behav Biomed Mater; 2019 Jul; 95():232-239. PubMed ID: 31035037
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanical properties and microstructural evolution of vacuum hot-pressed titanium and Ti-6Al-7Nb alloy.
    Bolzoni L; Ruiz-Navas EM; Neubauer E; Gordo E
    J Mech Behav Biomed Mater; 2012 May; 9():91-9. PubMed ID: 22498287
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-joining of zirconia/hydroxyapatite composites using plastic deformation process.
    Singh D; de la Cinta Lorenzo-Martin M; Gutiérrez-Mora F; Routbort JL; Case ED
    Acta Biomater; 2006 Nov; 2(6):669-75. PubMed ID: 16935578
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy.
    Zheng YF; Gu XN; Xi YL; Chai DL
    Acta Biomater; 2010 May; 6(5):1783-91. PubMed ID: 19815098
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis, mechanical properties and corrosion behavior of powder metallurgy processed Fe/Mg
    Sikora-Jasinska M; Paternoster C; Mostaed E; Tolouei R; Casati R; Vedani M; Mantovani D
    Mater Sci Eng C Mater Biol Appl; 2017 Dec; 81():511-521. PubMed ID: 28888005
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.