These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 24411370)
1. Synthesis of water-soluble Cu/PAA composite flowers and their antibacterial activities. Li B; Li Y; Wu Y; Zhao Y Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():205-11. PubMed ID: 24411370 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of poly acrylic acid modified silver nanoparticles and their antimicrobial activities. Ni Z; Wang Z; Sun L; Li B; Zhao Y Mater Sci Eng C Mater Biol Appl; 2014 Aug; 41():249-54. PubMed ID: 24907758 [TBL] [Abstract][Full Text] [Related]
3. Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications. Zain NM; Stapley AG; Shama G Carbohydr Polym; 2014 Nov; 112():195-202. PubMed ID: 25129735 [TBL] [Abstract][Full Text] [Related]
4. Antibacterial activity of poly(vinyl alcohol)-b-poly(acrylonitrile) based micelles loaded with silver nanoparticles. Bryaskova R; Pencheva D; Kyulavska M; Bozukova D; Debuigne A; Detrembleur C J Colloid Interface Sci; 2010 Apr; 344(2):424-8. PubMed ID: 20074742 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and characterization of bovine serum albumin-copper nanocomposites for antibacterial applications. Rastogi L; Arunachalam J Colloids Surf B Biointerfaces; 2013 Aug; 108():134-41. PubMed ID: 23531744 [TBL] [Abstract][Full Text] [Related]
6. Polyacrylonitrile nanofibers coated with silver nanoparticles using a modified coaxial electrospinning process. Yu DG; Zhou J; Chatterton NP; Li Y; Huang J; Wang X Int J Nanomedicine; 2012; 7():5725-32. PubMed ID: 23166437 [TBL] [Abstract][Full Text] [Related]
7. Facile synthesis of silver nanoparticles mediated by polyacrylamide-reduction approach to antibacterial application. Salaheldin HI; Almalki MHK; Hezma AEM; Osman GEH IET Nanobiotechnol; 2017 Jun; 11(4):448-453. PubMed ID: 28530195 [TBL] [Abstract][Full Text] [Related]
8. Superhydrophobic surface with hierarchical architecture and bimetallic composition for enhanced antibacterial activity. Zhang M; Wang P; Sun H; Wang Z ACS Appl Mater Interfaces; 2014 Dec; 6(24):22108-15. PubMed ID: 25418198 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of ultrastable copper sulfide nanoclusters via trapping the reaction intermediate: potential anticancer and antibacterial applications. Wang HY; Hua XW; Wu FG; Li B; Liu P; Gu N; Wang Z; Chen Z ACS Appl Mater Interfaces; 2015 Apr; 7(13):7082-92. PubMed ID: 25785786 [TBL] [Abstract][Full Text] [Related]
10. Preparation and characterization of chitosan/polyacrylic acid/copper nanocomposites and their impact on onion production. Abd El-Aziz ME; Morsi SMM; Salama DM; Abdel-Aziz MS; Abd Elwahed MS; Shaaban EA; Youssef AM Int J Biol Macromol; 2019 Feb; 123():856-865. PubMed ID: 30452990 [TBL] [Abstract][Full Text] [Related]
11. Biosynthesis of silver nanoparticles and its antibacterial and antifungal activities towards Gram-positive, Gram-negative bacterial strains and different species of Candida fungus. Rahisuddin ; Al-Thabaiti SA; Khan Z; Manzoor N Bioprocess Biosyst Eng; 2015 Sep; 38(9):1773-81. PubMed ID: 26017756 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of phenolic precursor-based porous carbon beads in situ dispersed with copper-silver bimetal nanoparticles for antibacterial applications. Khare P; Sharma A; Verma N J Colloid Interface Sci; 2014 Mar; 418():216-24. PubMed ID: 24461838 [TBL] [Abstract][Full Text] [Related]
13. Highly stable and re-dispersible nano Cu hydrosols with sensitively size-dependent catalytic and antibacterial activities. Zhang Y; Zhu P; Li G; Wang W; Chen L; Lu DD; Sun R; Zhou F; Wong C Nanoscale; 2015 Aug; 7(32):13775-83. PubMed ID: 26219381 [TBL] [Abstract][Full Text] [Related]
14. Hydrothermal synthesis of copper based nanoparticles: antimicrobial screening and interaction with DNA. Giannousi K; Lafazanis K; Arvanitidis J; Pantazaki A; Dendrinou-Samara C J Inorg Biochem; 2014 Apr; 133():24-32. PubMed ID: 24441110 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of highly stable, water-dispersible copper nanoparticles as catalysts for nitrobenzene reduction. Kaur R; Giordano C; Gradzielski M; Mehta SK Chem Asian J; 2014 Jan; 9(1):189-98. PubMed ID: 24124135 [TBL] [Abstract][Full Text] [Related]
16. Mechanistic aspects of biologically synthesized silver nanoparticles against food- and water-borne microbes. Krishnaraj C; Harper SL; Choe HS; Kim KP; Yun SI Bioprocess Biosyst Eng; 2015 Oct; 38(10):1943-58. PubMed ID: 26178241 [TBL] [Abstract][Full Text] [Related]
17. Electrospun polyacrylonitrile nanofibers loaded with silver nanoparticles by silver mirror reaction. Shi Y; Li Y; Zhang J; Yu Z; Yang D Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():346-55. PubMed ID: 25842144 [TBL] [Abstract][Full Text] [Related]
18. Comparison of antibacterial activity of Ag nanoparticles synthesized from leaf extract of Parthenium hystrophorus L in aqueous media and Gentamicin sulphate: in-vitro. Anwar MF; Yadav D; Kapoor S; Chander J; Samim M Drug Dev Ind Pharm; 2015 Jan; 41(1):43-50. PubMed ID: 24111829 [TBL] [Abstract][Full Text] [Related]
19. Highly Efficient Antibacterial and Pb(II) Removal Effects of Ag-CoFe2O4-GO Nanocomposite. Ma S; Zhan S; Jia Y; Zhou Q ACS Appl Mater Interfaces; 2015 May; 7(19):10576-86. PubMed ID: 25905556 [TBL] [Abstract][Full Text] [Related]
20. Cytotoxicity of Ultrasmall Gold Nanoparticles on Planktonic and Biofilm Encapsulated Gram-Positive Staphylococci. Boda SK; Broda J; Schiefer F; Weber-Heynemann J; Hoss M; Simon U; Basu B; Jahnen-Dechent W Small; 2015 Jul; 11(26):3183-93. PubMed ID: 25712910 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]