These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24411999)

  • 21. Use of novel phenyl-hexyl core-shell particles in nano-LC.
    Fanali S; Rocchi S; Chankvetadze B
    Electrophoresis; 2013 Jun; 34(12):1737-42. PubMed ID: 23423853
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimization of the single-step synthesis of hybrid C(8) silica monoliths dedicated to nano-liquid chromatography and capillary electrochromatography.
    Roux R; Jaoudé MA; Demesmay C; Rocca JL
    J Chromatogr A; 2008 Oct; 1209(1-2):120-7. PubMed ID: 18814877
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of pore structural parameters on column performance and resolution of reversed-phase monolithic silica columns for peptides and proteins.
    Skudas R; Grimes BA; Machtejevas E; Kudirkaite V; Kornysova O; Hennessy TP; Lubda D; Unger KK
    J Chromatogr A; 2007 Mar; 1144(1):72-84. PubMed ID: 17084406
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Development of a portable micro-liquid chromatograph].
    Fu Q; Yang L; Wang Q
    Se Pu; 2021 Sep; 39(9):1030-1037. PubMed ID: 34486843
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High efficiency polyethylene glycol diacrylate monoliths for reversed-phase capillary liquid chromatography of small molecules.
    Aggarwal P; Lawson JS; Tolley HD; Lee ML
    J Chromatogr A; 2014 Oct; 1364():96-106. PubMed ID: 25193173
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plasma low-density lipoprotein immobilized silica as stationary phase in nano-liquid chromatography.
    Liu Y; Lipponen K; Cilpa-Karhu G; Öörni K; Riekkola ML
    J Chromatogr A; 2012 Dec; 1270():104-10. PubMed ID: 23159197
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advantages of core-shell particle columns in Sequential Injection Chromatography for determination of phenolic acids.
    Chocholouš P; Vacková J; Srámková I; Satínský D; Solich P
    Talanta; 2013 Jan; 103():221-7. PubMed ID: 23200381
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cyclodextrins as a chiral mobile phase additive in nano-liquid chromatography: comparison of reversed-phase silica monolithic and particulate capillary columns.
    Rocco A; Maruška A; Fanali S
    Anal Bioanal Chem; 2012 Mar; 402(9):2935-43. PubMed ID: 22349325
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Possibilities of retention prediction in fast gradient liquid chromatography. Part 3: Short silica monolithic columns.
    Jandera P; Hájek T
    J Chromatogr A; 2015 Sep; 1410():76-89. PubMed ID: 26239700
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Practical observations on the performance of bare silica in hydrophilic interaction compared with C18 reversed-phase liquid chromatography.
    Heaton JC; Wang X; Barber WE; Buckenmaier SM; McCalley DV
    J Chromatogr A; 2014 Feb; 1328():7-15. PubMed ID: 24447467
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Nano flow multidimensional liquid chromatography for proteome analysis of rat liver].
    Wang Y; Gao M; Gu X; Zhang X
    Se Pu; 2005 Jan; 23(1):41-5. PubMed ID: 15881365
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hybrid organic-inorganic octyl monolithic column for in-tube solid-phase microextraction coupled to capillary high-performance liquid chromatography.
    Zheng MM; Lin B; Feng YQ
    J Chromatogr A; 2007 Sep; 1164(1-2):48-55. PubMed ID: 17675044
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Separation of benzene and deuterated benzenes by reversed-phase and recycle liquid chromatography using monolithic capillary columns.
    Lim LW; Uzu H; Takeuchi T
    J Sep Sci; 2004 Nov; 27(15-16):1339-44. PubMed ID: 15587284
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamically modified C
    Thirumalai M; Kumar SN; Prabhakaran D; Sivaraman N; Maheswari MA
    J Chromatogr A; 2018 Sep; 1569():62-69. PubMed ID: 30025611
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of a monolithic silica column operated in the hydrophilic interaction chromatography mode with evaporative light scattering detection for the separation and detection of counter-ions.
    Pack BW; Risley DS
    J Chromatogr A; 2005 May; 1073(1-2):269-75. PubMed ID: 15909529
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of a high-pressure electro-osmotic pump using nanometer silica in capillary liquid chromatography.
    Chen L; Guan Y; Ma J; Luo G; Liu K
    J Chromatogr A; 2005 Jan; 1064(1):19-24. PubMed ID: 15729816
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly efficient monolithic silica capillary columns modified with poly(acrylic acid) for hydrophilic interaction chromatography.
    Horie K; Ikegami T; Hosoya K; Saad N; Fiehn O; Tanaka N
    J Chromatogr A; 2007 Sep; 1164(1-2):198-205. PubMed ID: 17689542
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental evaluation of chromatographic performance of capillary and microfluidic columns with linear or curved channels.
    Gilar M; McDonald TS; Gritti F
    J Chromatogr A; 2016 Oct; 1470():76-83. PubMed ID: 27720421
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrically assisted capillary liquid chromatography using a silica monolithic column.
    Zhang B; Bergström ET; Goodall DM
    J Chromatogr A; 2010 Apr; 1217(15):2243-7. PubMed ID: 20219202
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of automated isocratic and gradient nano-liquid chromatography and capillary electrochromatography.
    Alexander ; Poli JB; Markides KE
    Anal Chem; 1999 Jul; 71(13):2398-409. PubMed ID: 21662785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.