These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 24412)

  • 1. Proton gradient formation during transport of Ca2+ by sarcoplasmic reticulum.
    Madeira VM
    Arch Biochem Biophys; 1978 Jan; 185(2):316-25. PubMed ID: 24412
    [No Abstract]   [Full Text] [Related]  

  • 2. Adenosine 5'-triphosphate dependent fluxes of manganese and and hydrogen ions in sarcoplasmic reticulum vesicles.
    Chiesi M; Inesi G
    Biochemistry; 1980 Jun; 19(13):2912-8. PubMed ID: 7190437
    [No Abstract]   [Full Text] [Related]  

  • 3. A role of H+ flux in active Ca2+ transport into sarcoplasmic reticulum vesicles. I. Effect of an artificially imposed H+ gradient on Ca2+ uptake.
    Ueno T; Sekine T
    J Biochem; 1981 Apr; 89(4):1239-46. PubMed ID: 6265434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A role of H+ flux in active Ca2+ transport into sarcoplasmic reticulum vesicles. II. H+ ejection during Ca2+ uptake.
    Ueno T; Sekine T
    J Biochem; 1981 Apr; 89(4):1247-52. PubMed ID: 6265435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-dependent resistance to alkaline pH of oxalate-supported calcium uptake by sarcoplasmic reticulum.
    Tate CA; Van Winkle WB; Entman ML
    Life Sci; 1980 Oct; 27(16):1453-64. PubMed ID: 6449643
    [No Abstract]   [Full Text] [Related]  

  • 6. ADP-activated calcium ion exchange in sarcoplasmic reticulum vesicles.
    Beirăo PS; De Meis L
    Biochim Biophys Acta; 1976 May; 433(3):520-30. PubMed ID: 819033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of calcium binding and release by canine cardiac relaxing system (sarcoplasmic reticulum). The use of specific inhibitors to construct a two-component model for calcium binding and transport.
    Entman ML; Snow TR; Freed D; Schwartz A
    J Biol Chem; 1973 Nov; 248(22):7762-72. PubMed ID: 4270770
    [No Abstract]   [Full Text] [Related]  

  • 8. ATP and Ca2+ binding by the Ca2+ pump protein of sarcoplasmic reticulum.
    Meissner G
    Biochim Biophys Acta; 1973 Apr; 298(4):906-26. PubMed ID: 4269715
    [No Abstract]   [Full Text] [Related]  

  • 9. Calcium binding by skeletal muscle sarcolemma.
    Sulakhe PV; Drummond GI; Ng DC
    J Biol Chem; 1973 Jun; 248(12):4150-7. PubMed ID: 4268120
    [No Abstract]   [Full Text] [Related]  

  • 10. Trans-magnesium dependency of ATP-dependent calcium uptake into sarcoplasmic reticulum of skeletal muscle.
    Morsy FA; Shamoo AE
    Magnesium; 1985; 4(4):182-7. PubMed ID: 2934589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanism of active calcium transport by sarcoplasmic reticulum.
    Tada M; Yamamoto T; Tonomura Y
    Physiol Rev; 1978 Jan; 58(1):1-79. PubMed ID: 23557
    [No Abstract]   [Full Text] [Related]  

  • 12. Release of Ca2+ from the sarcoplasmic reticulum increases mitochondrial [Ca2+] in rat pulmonary artery smooth muscle cells.
    Drummond RM; Tuft RA
    J Physiol; 1999 Apr; 516 ( Pt 1)(Pt 1):139-47. PubMed ID: 10066929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of chlorotetracycline permeation in fragmented, ATPase-rich sarcoplasmic reticulum.
    Millman MS; Caswell AH; Haynes DH
    Membr Biochem; 1980; 3(4):291-315. PubMed ID: 6783811
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of ruthenium red on Ca2+ uptake and ATPase of sarcoplasmic reticulum of rabbit skeletal muscle.
    Vale MG; Carvalho AP
    Biochim Biophys Acta; 1973 Oct; 325(1):29-37. PubMed ID: 4272356
    [No Abstract]   [Full Text] [Related]  

  • 15. [Changes in membrane potential and proton gradient during Ca2+ transport in sarcoplasmic reticulum].
    Pechatnikov VA; Ivkova MN; Rizvanov FF; Pletnev VV
    Dokl Akad Nauk SSSR; 1980; 250(5):1255-8. PubMed ID: 6445257
    [No Abstract]   [Full Text] [Related]  

  • 16. [The effect of the external electric field on Ca2+ transport in the sarcoplasmic reticulum].
    Pechatnikov VA; Pletnev VV
    Biofizika; 1984; 29(3):438-41. PubMed ID: 6087927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibitory and stimulatory effects of fluoride on the calcium pump of cardiac sarcoplasmic reticulum.
    Narayanan N; Su N; Bedard P
    Biochim Biophys Acta; 1991 Nov; 1070(1):83-91. PubMed ID: 1836355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium transport and release by the sarcoplasmic reticulum.
    Katz AM; Shigekawa M; Repke DI; Hasselbach W
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():205-12. PubMed ID: 22900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP synthesis by an artificial proton gradient in right-side-out membrane vesicles of Escherichia coli.
    Tsuchiya T; Rosen BP
    Biochem Biophys Res Commun; 1976 Jan; 68(2):497-502. PubMed ID: 3178
    [No Abstract]   [Full Text] [Related]  

  • 20. [Effect of gradients of monovalent cations on active transport of Ca2+ in the sarcoplasmic reticulum and proteoliposomes].
    Tugaĭ VA; Diadiusha GP; Usatiuk PV; Zemlianaia NN
    Ukr Biokhim Zh (1978); 1988; 60(1):69-74. PubMed ID: 3363678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.