BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 24412)

  • 21. [Active calcium transport in biomembranes--with special reference to calcium pump of the sarcoplasmic reticulum].
    Kanazawa T
    Hokkaido Igaku Zasshi; 1983 Mar; 58(2):86-92. PubMed ID: 6347853
    [No Abstract]   [Full Text] [Related]  

  • 22. Calcium release from the sarcoplasmic reticulum.
    Endo M
    Physiol Rev; 1977 Jan; 57(1):71-108. PubMed ID: 13441
    [No Abstract]   [Full Text] [Related]  

  • 23. Characterization of cardiac sarcoplasmic reticulum ATP-ADP phosphate exchange and phosphorylation of the calcium transport adenosine triphosphatase.
    Suko J; Hasselbach W
    Eur J Biochem; 1976 Apr; 64(1):123-30. PubMed ID: 6267
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Interaction of fluorescent probes with membranes of sarcoplasmic reticulum in AMP deamination].
    TugÄ­ VA; KurskiÄ­ MD; Usatiuk PV
    Ukr Biokhim Zh (1978); 1982; 54(1):61-5. PubMed ID: 7058553
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of Mg2+ and ATP on the phosphate transporter of sarcoplasmic reticulum.
    Stefanova HI; Jane SD; East JM; Lee AG
    Biochim Biophys Acta; 1991 May; 1064(2):329-34. PubMed ID: 1645201
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of halothane on the stability of Ca2+ transport activity of isolated fragmented sarcoplasmic reticulum.
    Diamond EM; Berman MC
    Biochem Pharmacol; 1980 Feb; 29(3):375-81. PubMed ID: 6444817
    [No Abstract]   [Full Text] [Related]  

  • 27. Phosphorylation of the calcium-transport adenosine triphosphate of cardiac sarcoplasmic reticulum by orthophosphate.
    Winkler F; Suko J
    Eur J Biochem; 1977 Aug; 77(3):611-9. PubMed ID: 19259
    [No Abstract]   [Full Text] [Related]  

  • 28. Alkalinization within sarcoplasmic reticulum during the uptake of calcium ions.
    Madeira VM
    Arch Biochem Biophys; 1979 Mar; 193(1):22-7. PubMed ID: 36853
    [No Abstract]   [Full Text] [Related]  

  • 29. Functional characterization of junctional terminal cisternae from mammalian fast skeletal muscle sarcoplasmic reticulum.
    Chu A; Volpe P; Costello B; Fleischer S
    Biochemistry; 1986 Dec; 25(25):8315-24. PubMed ID: 2434126
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ligand binding to sarcoplasmic reticulum. The effects of Ca2+, Mg2+, and ATP binding on the fluorescence of membrane-bound pyrene.
    Habercom MS; Cheung HC
    Arch Biochem Biophys; 1978 Dec; 191(2):756-63. PubMed ID: 742899
    [No Abstract]   [Full Text] [Related]  

  • 31. Ca2+ transport mediated by a synthetic neutral Ca2+ -ionophore in biological membranes.
    Caroni P; Gazzotti P; Vuilleumier P; Simon W; Carafoli E
    Biochim Biophys Acta; 1977 Nov; 470(3):437-45. PubMed ID: 336090
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High and low affinity Ca2+ binding to the sarcoplasmic reticulum: use of a high-affinity fluorescent calcium indicator.
    Chiu VC; Haynes DH
    Biophys J; 1977 Apr; 18(1):3-22. PubMed ID: 15667
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of anions, pH and magnesium on calcium accumulation and release by sarcoplasmic reticulum vesicles.
    Sorenson MM; De Meis L
    Biochim Biophys Acta; 1977 Mar; 465(2):210-23. PubMed ID: 16250336
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ca-releasing action of beta, gamma-methylene adenosine triphosphate on fragmented sarcoplasmic reticulum.
    Ogawa Y; Ebashi S
    J Biochem; 1976 Nov; 80(5):1149-57. PubMed ID: 1002681
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quinacrine inhibits the calcium-induced calcium release in heavy sarcoplasmic reticulum vesicles.
    Fernandez-Belda F; Soler F; Gomez-Fernandez JC
    Biochim Biophys Acta; 1989 Nov; 985(3):279-85. PubMed ID: 2529908
    [TBL] [Abstract][Full Text] [Related]  

  • 36. H+ countertransport and electrogenicity of the sarcoplasmic reticulum Ca2+ pump in reconstituted proteoliposomes.
    Yu X; Carroll S; Rigaud JL; Inesi G
    Biophys J; 1993 Apr; 64(4):1232-42. PubMed ID: 8388268
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic inhibition alters subcellular calcium release patterns in rat ventricular myocytes: implications for defective excitation-contraction coupling during cardiac ischemia and failure.
    Fukumoto GH; Lamp ST; Motter C; Bridge JH; Garfinkel A; Goldhaber JI
    Circ Res; 2005 Mar; 96(5):551-7. PubMed ID: 15718501
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [ATP-dependent binding of ions in membrane fragments (an analysis in the terms of the ion exchange properties of the membranes)].
    Kholodova IuD
    Fiziol Zh; 1976; 22(2):232-40. PubMed ID: 992125
    [No Abstract]   [Full Text] [Related]  

  • 39. Active transport of calcium ion in sarcoplasmic membranes.
    Inesi G
    Annu Rev Biophys Bioeng; 1972; 1():191-210. PubMed ID: 4346304
    [No Abstract]   [Full Text] [Related]  

  • 40. A new mechanism by which an H+ concentration gradient drives the synthesis of adenosine triphosphate, pH jump, and adenosine triphosphate synthesis by the Ca2+-dependnet adenosine triphosphatase of sarcoplasmic reticulum.
    de Meis L; Tume RK
    Biochemistry; 1977 Oct; 16(20):4455-63. PubMed ID: 20933
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.