BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 24412098)

  • 1. A guideline for the identification of environmentally relevant, ionizable organic molecule species.
    Schaffer M; Licha T
    Chemosphere; 2014 May; 103():12-25. PubMed ID: 24412098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ranking REACH registered neutral, ionizable and ionic organic chemicals based on their aquatic persistency and mobility.
    Arp HPH; Brown TN; Berger U; Hale SE
    Environ Sci Process Impacts; 2017 Jul; 19(7):939-955. PubMed ID: 28628174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity-based concept for transport and partitioning of ionizing organics.
    Trapp S; Franco A; Mackay D
    Environ Sci Technol; 2010 Aug; 44(16):6123-9. PubMed ID: 20704208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of ionizable organic compounds in different species on the sorption of p-nitroaniline to sediment.
    Zhu L; Lou B; Yang K; Chen B
    Water Res; 2005; 39(2-3):281-8. PubMed ID: 15644236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of organic pollutants by surfactant modified zeolite: comparison between ionizable phenolic compounds and non-ionizable organic compounds.
    Xie J; Meng W; Wu D; Zhang Z; Kong H
    J Hazard Mater; 2012 Sep; 231-232():57-63. PubMed ID: 22771348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of the soil-water partition coefficient normalized to organic carbon for ionizable organic chemicals.
    Franco A; Trapp S
    Environ Toxicol Chem; 2008 Oct; 27(10):1995-2004. PubMed ID: 18384236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and chemical characterization of specific organic constituents of petrochemical effluents.
    Botalova O; Schwarzbauer J; Frauenrath T; Dsikowitzky L
    Water Res; 2009 Aug; 43(15):3797-812. PubMed ID: 19577787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of quantitative structure-property relationships for the fate of ionizable organic chemicals in water matrices and identification of knowledge gaps.
    Nolte TM; Ragas AM
    Environ Sci Process Impacts; 2017 Mar; 19(3):221-246. PubMed ID: 28296985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A methodology for ranking and hazard identification of xenobiotic organic compounds in urban stormwater.
    Baun A; Eriksson E; Ledin A; Mikkelsen PS
    Sci Total Environ; 2006 Oct; 370(1):29-38. PubMed ID: 16814849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water clusters contributed to molecular interactions of ionizable organic pollutants with aromatized biochar via π-PAHB: Sorption experiments and DFT calculations.
    Zhang K; Chen B; Mao J; Zhu L; Xing B
    Environ Pollut; 2018 Sep; 240():342-352. PubMed ID: 29751330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Equilibrium partitioning of organic compounds to OASIS HLB
    Jeong Y; Schäffer A; Smith K
    Chemosphere; 2017 May; 174():297-305. PubMed ID: 28183055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation and comparison of the uptake of ionizable and polar pesticides, pharmaceuticals and personal care products by POCIS and Chemcatchers.
    Kaserzon SL; Hawker DW; Kennedy K; Bartkow M; Carter S; Booij K; Mueller JF
    Environ Sci Process Impacts; 2014 Nov; 16(11):2517-26. PubMed ID: 25208684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dow and Kaw,eff vs. Kow and Kaw degrees: acid/base ionization effects on partitioning properties and screening commercial chemicals for long-range transport and bioaccumulation potential.
    Rayne S; Forest K
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Oct; 45(12):1550-94. PubMed ID: 20721799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption of emerging trace organic compounds onto wastewater sludge solids.
    Stevens-Garmon J; Drewes JE; Khan SJ; McDonald JA; Dickenson ER
    Water Res; 2011 May; 45(11):3417-26. PubMed ID: 21536314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A framework for assessing the retardation of organic molecules in groundwater: Implications of the species distribution for the sorption-influenced transport.
    Schaffer M; Licha T
    Sci Total Environ; 2015 Aug; 524-525():187-94. PubMed ID: 25897727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of dissolved organic matter on the photolysis of the ionizable antibiotic norfloxacin.
    Liang C; Zhao H; Deng M; Quan X; Chen S; Wang H
    J Environ Sci (China); 2015 Jan; 27():115-23. PubMed ID: 25597669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abiotic hydrolysis of pesticides in the aquatic environment.
    Katagi T
    Rev Environ Contam Toxicol; 2002; 175():79-261. PubMed ID: 12206055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods for estimating the bioconcentration factor of ionizable organic chemicals.
    Fu W; Franco A; Trapp S
    Environ Toxicol Chem; 2009 Jul; 28(7):1372-9. PubMed ID: 19245273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Priority Substances and Emerging Organic Pollutants in Portuguese Aquatic Environment: A Review.
    Ribeiro C; Ribeiro AR; Tiritan ME
    Rev Environ Contam Toxicol; 2016; 238():1-44. PubMed ID: 26718848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Guideline for the mathematical estimate of the migration of individual substances from organic materials in drinking water (Modelling guideline). Version as of October 7, 2008].
    Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz; 2009 Nov; 52(11):1105-12. PubMed ID: 19838651
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.