BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 24412327)

  • 1. OsRPK1, a novel leucine-rich repeat receptor-like kinase, negatively regulates polar auxin transport and root development in rice.
    Zou Y; Liu X; Wang Q; Chen Y; Liu C; Qiu Y; Zhang W
    Biochim Biophys Acta; 2014 Jun; 1840(6):1676-85. PubMed ID: 24412327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. OsAUX1 controls lateral root initiation in rice (Oryza sativa L.).
    Zhao H; Ma T; Wang X; Deng Y; Ma H; Zhang R; Zhao J
    Plant Cell Environ; 2015 Nov; 38(11):2208-22. PubMed ID: 25311360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1.
    Chen Y; Fan X; Song W; Zhang Y; Xu G
    Plant Biotechnol J; 2012 Feb; 10(2):139-49. PubMed ID: 21777365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutation of
    Wang H; Ouyang Q; Yang C; Zhang Z; Hou D; Liu H; Xu H
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice.
    Xu M; Zhu L; Shou H; Wu P
    Plant Cell Physiol; 2005 Oct; 46(10):1674-81. PubMed ID: 16085936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saturated humidity accelerates lateral root development in rice (Oryza sativa L.) seedlings by increasing phloem-based auxin transport.
    Chhun T; Uno Y; Taketa S; Azuma T; Ichii M; Okamoto T; Tsurumi S
    J Exp Bot; 2007; 58(7):1695-704. PubMed ID: 17383991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. OsMADS25 regulates root system development via auxin signalling in rice.
    Zhang G; Xu N; Chen H; Wang G; Huang J
    Plant J; 2018 Sep; 95(6):1004-1022. PubMed ID: 29932274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution.
    Lu G; Coneva V; Casaretto JA; Ying S; Mahmood K; Liu F; Nambara E; Bi YM; Rothstein SJ
    Plant J; 2015 Sep; 83(5):913-25. PubMed ID: 26213119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryza sativa L.).
    Yu C; Sun C; Shen C; Wang S; Liu F; Liu Y; Chen Y; Li C; Qian Q; Aryal B; Geisler M; Jiang de A; Qi Y
    Plant J; 2015 Sep; 83(5):818-30. PubMed ID: 26140668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An S-domain receptor-like kinase, OsESG1, regulates early crown root development and drought resistance in rice.
    Pan J; Li Z; Wang Q; Yang L; Yao F; Liu W
    Plant Sci; 2020 Jan; 290():110318. PubMed ID: 31779898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cadmium Inhibits Lateral Root Emergence in Rice by Disrupting OsPIN-Mediated Auxin Distribution and the Protective Effect of OsHMA3.
    Wang HQ; Xuan W; Huang XY; Mao C; Zhao FJ
    Plant Cell Physiol; 2021 Mar; 62(1):166-177. PubMed ID: 33300991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving rice tolerance to potassium deficiency by enhancing OsHAK16p:WOX11-controlled root development.
    Chen G; Feng H; Hu Q; Qu H; Chen A; Yu L; Xu G
    Plant Biotechnol J; 2015 Aug; 13(6):833-48. PubMed ID: 25599895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Over-expression of OsAGAP, an ARF-GAP, interferes with auxin influx, vesicle trafficking and root development.
    Zhuang X; Jiang J; Li J; Ma Q; Xu Y; Xue Y; Xu Z; Chong K
    Plant J; 2006 Nov; 48(4):581-91. PubMed ID: 17059407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The promoting effects of alginate oligosaccharides on root development in Oryza sativa L. mediated by auxin signaling.
    Zhang Y; Yin H; Zhao X; Wang W; Du Y; He A; Sun K
    Carbohydr Polym; 2014 Nov; 113():446-54. PubMed ID: 25256506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A strigolactone signal is required for adventitious root formation in rice.
    Sun H; Tao J; Hou M; Huang S; Chen S; Liang Z; Xie T; Wei Y; Xie X; Yoneyama K; Xu G; Zhang Y
    Ann Bot; 2015 Jun; 115(7):1155-62. PubMed ID: 25888593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gibberellins modulate local auxin biosynthesis and polar auxin transport by negatively affecting flavonoid biosynthesis in the root tips of rice.
    Li J; Yang Y; Chai M; Ren M; Yuan J; Yang W; Dong Y; Liu B; Jian Q; Wang S; Peng B; Yuan H; Fan H
    Plant Sci; 2020 Sep; 298():110545. PubMed ID: 32771158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The putative auxin efflux carrier OsPIN3t is involved in the drought stress response and drought tolerance.
    Zhang Q; Li J; Zhang W; Yan S; Wang R; Zhao J; Li Y; Qi Z; Sun Z; Zhu Z
    Plant J; 2012 Dec; 72(5):805-16. PubMed ID: 22882529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of OsRAA1 causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower, and root development and root response to gravity.
    Ge L; Chen H; Jiang JF; Zhao Y; Xu ML; Xu YY; Tan KH; Xu ZH; Chong K
    Plant Physiol; 2004 Jul; 135(3):1502-13. PubMed ID: 15247372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rice Inositol Polyphosphate Kinase (OsIPK2) Directly Interacts with OsIAA11 to Regulate Lateral Root Formation.
    Chen Y; Yang Q; Sang S; Wei Z; Wang P
    Plant Cell Physiol; 2017 Nov; 58(11):1891-1900. PubMed ID: 29016933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microcystin-LR-induced phytotoxicity in rice crown root is associated with the cross-talk between auxin and nitric oxide.
    Chen J; Zhang HQ; Hu LB; Shi ZQ
    Chemosphere; 2013 Sep; 93(2):283-93. PubMed ID: 23726011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.