These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 24412393)

  • 41. A Hidden Markov Model for 3D Catheter Tip Tracking With 2D X-ray Catheterization Sequence and 3D Rotational Angiography.
    Ambrosini P; Smal I; Ruijters D; Niessen WJ; Moelker A; Van Walsum T
    IEEE Trans Med Imaging; 2017 Mar; 36(3):757-768. PubMed ID: 27845655
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Real Time 3D Representation and Tracking of Guidewire for Image Guided Cardiovascular Interventions.
    Mehmood R; Iqbal N; Tahir A; Riaz MM; Nawaz R
    Adv Exp Med Biol; 2017; 989():165-176. PubMed ID: 28971425
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A robust and fast approach to simulating the behavior of guidewire in vascular interventional radiology.
    Wang H; Wu J; Wei M; Ma X
    Comput Med Imaging Graph; 2015 Mar; 40():160-9. PubMed ID: 25467803
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A method to reconstruct patient-specific proximal femur surface models from planar pre-operative radiographs.
    Galibarov PE; Prendergast PJ; Lennon AB
    Med Eng Phys; 2010 Dec; 32(10):1180-8. PubMed ID: 20933453
    [TBL] [Abstract][Full Text] [Related]  

  • 45. C-arm tracking and reconstruction without an external tracker.
    Jain A; Fichtinger G
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):494-502. PubMed ID: 17354927
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Real-time 3D reconstruction for collision avoidance in interventional environments.
    Ladikos A; Benhimane S; Navab N
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):526-34. PubMed ID: 18982645
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Registration of angiographic image on real-time fluoroscopic image for image-guided percutaneous coronary intervention.
    Kim D; Park S; Jeong MH; Ryu J
    Int J Comput Assist Radiol Surg; 2018 Feb; 13(2):203-213. PubMed ID: 29170866
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [An automatic inspection technology for angiostenosis in contrastographic image].
    Feng Y; Liu N; Feng Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Apr; 30(2):380-6, 394. PubMed ID: 23858767
    [TBL] [Abstract][Full Text] [Related]  

  • 49. 3D reconstruction of a patient-specific surface model of the proximal femur from calibrated x-ray radiographs: a validation study.
    Zheng G; Schumann S
    Med Phys; 2009 Apr; 36(4):1155-66. PubMed ID: 19472621
    [TBL] [Abstract][Full Text] [Related]  

  • 50. New approaches to catheter navigation for interventional radiology simulation.
    Cotin S; Duriez C; Lenoir J; Neumann P; Dawson S
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):534-42. PubMed ID: 16686001
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fast marker based C-Arm pose estimation.
    Kainz B; Grabner M; Rüther M
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):652-9. PubMed ID: 18982660
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Patient-Specific Computational Models of Coronary Arteries Using Monoplane X-Ray Angiograms.
    Zifan A; Liatsis P
    Comput Math Methods Med; 2016; 2016():2695962. PubMed ID: 27403203
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hybrid constraint optimization for 3D subcutaneous vein reconstruction by near-infrared images.
    Wu C; Yang J; Zhu J; Cong W; Ai D; Song H; Liang X; Wang Y
    Comput Methods Programs Biomed; 2018 Sep; 163():123-133. PubMed ID: 30119847
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Monoplane 3D-2D registration of cerebral angiograms based on multi-objective stratified optimization.
    Aksoy T; Špiclin Ž; Pernuš F; Unal G
    Phys Med Biol; 2017 Nov; 62(24):9377-9394. PubMed ID: 29045237
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Blood vessel modeling for interactive simulation of interventional neuroradiology procedures.
    Kerrien E; Yureidini A; Dequidt J; Duriez C; Anxionnat R; Cotin S
    Med Image Anal; 2017 Jan; 35():685-698. PubMed ID: 27788384
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Topological match method in 3D reconstruction of heart vessel].
    Lu P; Huang J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Feb; 28(1):153-6, 162. PubMed ID: 21485204
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 3D reconstruction of the cerebral arterial network from stereotactic DSA.
    Coste E; Vasseur C; Rousseau J
    Med Phys; 1999 Sep; 26(9):1783-93. PubMed ID: 10505865
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A polymer-based MR-compatible guidewire: a study to explore new prospects for interventional peripheral magnetic resonance angiography (ipMRA).
    Mekle R; Hofmann E; Scheffler K; Bilecen D
    J Magn Reson Imaging; 2006 Feb; 23(2):145-55. PubMed ID: 16374877
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Preliminary results of nonfluoroscopy-based 3D navigation for neurointerventional procedures.
    Pujol S; Frerichs K; Norbash A; Kikinis R; Westin CF
    J Vasc Interv Radiol; 2007 Feb; 18(2):289-98. PubMed ID: 17327564
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Automatic Radiographic Position Recognition from Image Frequency and Intensity.
    Ren NN; Ma AR; Han LB; Sun Y; Shao Y; Qiu JF
    J Healthc Eng; 2017; 2017():2727686. PubMed ID: 29104743
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.