These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 24412407)

  • 1. Combined overexpression of genes involved in pentose phosphate pathway enables enhanced D-xylose utilization by Clostridium acetobutylicum.
    Jin L; Zhang H; Chen L; Yang C; Yang S; Jiang W; Gu Y
    J Biotechnol; 2014 Mar; 173():7-9. PubMed ID: 24412407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose.
    Xiao H; Gu Y; Ning Y; Yang Y; Mitchell WJ; Jiang W; Yang S
    Appl Environ Microbiol; 2011 Nov; 77(22):7886-95. PubMed ID: 21926197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of solvent production from xylose mother liquor by engineering the xylose metabolic pathway in Clostridium acetobutylicum EA 2018.
    Li Z; Xiao H; Jiang W; Jiang Y; Yang S
    Appl Biochem Biotechnol; 2013 Oct; 171(3):555-68. PubMed ID: 23949683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering.
    Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2005 Apr; 22(5):359-68. PubMed ID: 15806613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of xylose utilization in Clostridium acetobutylicum via expression of the talA gene encoding transaldolase from Escherichia coli.
    Gu Y; Li J; Zhang L; Chen J; Niu L; Yang Y; Yang S; Jiang W
    J Biotechnol; 2009 Sep; 143(4):284-7. PubMed ID: 19695296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction of xylose utilization pathway and regulons in Firmicutes.
    Gu Y; Ding Y; Ren C; Sun Z; Rodionov DA; Zhang W; Yang S; Yang C; Jiang W
    BMC Genomics; 2010 Apr; 11():255. PubMed ID: 20406496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elimination of carbon catabolite repression in Clostridium acetobutylicum--a journey toward simultaneous use of xylose and glucose.
    Bruder M; Moo-Young M; Chung DA; Chou CP
    Appl Microbiol Biotechnol; 2015 Sep; 99(18):7579-88. PubMed ID: 25981995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative genomic and transcriptomic analysis revealed genetic characteristics related to solvent formation and xylose utilization in Clostridium acetobutylicum EA 2018.
    Hu S; Zheng H; Gu Y; Zhao J; Zhang W; Yang Y; Wang S; Zhao G; Yang S; Jiang W
    BMC Genomics; 2011 Feb; 12():93. PubMed ID: 21284892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular modulation of pleiotropic regulator CcpA for glucose and xylose coutilization by solvent-producing Clostridium acetobutylicum.
    Wu Y; Yang Y; Ren C; Yang C; Yang S; Gu Y; Jiang W
    Metab Eng; 2015 Mar; 28():169-179. PubMed ID: 25637046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shotgun proteomic monitoring of Clostridium acetobutylicum during stationary phase of butanol fermentation using xylose and comparison with the exponential phase.
    Sivagnanam K; Raghavan VG; Shah M; Hettich RL; Verberkmoes NC; Lefsrud MG
    J Ind Microbiol Biotechnol; 2012 Jun; 39(6):949-55. PubMed ID: 22395897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae.
    Zhou H; Cheng JS; Wang BL; Fink GR; Stephanopoulos G
    Metab Eng; 2012 Nov; 14(6):611-22. PubMed ID: 22921355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production through co-utilization of glucose and xylose.
    Yu L; Xu M; Tang IC; Yang ST
    Biotechnol Bioeng; 2015 Oct; 112(10):2134-41. PubMed ID: 25894463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchy in pentose sugar metabolism in Clostridium acetobutylicum.
    Aristilde L; Lewis IA; Park JO; Rabinowitz JD
    Appl Environ Microbiol; 2015 Feb; 81(4):1452-62. PubMed ID: 25527534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous utilization of D-cellobiose, D-glucose, and D-xylose by recombinant Corynebacterium glutamicum under oxygen-deprived conditions.
    Sasaki M; Jojima T; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):691-9. PubMed ID: 18810427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway.
    Harhangi HR; Akhmanova AS; Emmens R; van der Drift C; de Laat WT; van Dijken JP; Jetten MS; Pronk JT; Op den Camp HJ
    Arch Microbiol; 2003 Aug; 180(2):134-41. PubMed ID: 12811467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the fermentation performance of Clostridium acetobutylicum ATCC 824 by strengthening the VB1 biosynthesis pathway.
    Liao Z; Suo Y; Xue C; Fu H; Wang J
    Appl Microbiol Biotechnol; 2018 Sep; 102(18):8107-8119. PubMed ID: 29987383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in Clostridium acetobutylicum.
    Ren C; Gu Y; Hu S; Wu Y; Wang P; Yang Y; Yang C; Yang S; Jiang W
    Metab Eng; 2010 Sep; 12(5):446-54. PubMed ID: 20478391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional analysis of catabolite repression in Clostridium acetobutylicum growing on mixtures of D-glucose and D-xylose.
    Grimmler C; Held C; Liebl W; Ehrenreich A
    J Biotechnol; 2010 Nov; 150(3):315-23. PubMed ID: 20883732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
    Meiswinkel TM; Gopinath V; Lindner SN; Nampoothiri KM; Wendisch VF
    Microb Biotechnol; 2013 Mar; 6(2):131-40. PubMed ID: 23164409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of D-xylose pathway in Clostridium beijerinckii to optimize solvent production from xylose mother liquid.
    Xiao H; Li Z; Jiang Y; Yang Y; Jiang W; Gu Y; Yang S
    Metab Eng; 2012 Sep; 14(5):569-78. PubMed ID: 22677452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.