These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 24412500)

  • 41. Dendrimers as potential drug carriers. Part I. Solubilization of non-steroidal anti-inflammatory drugs in the presence of polyamidoamine dendrimers.
    Yiyun C; Tongwen X
    Eur J Med Chem; 2005 Nov; 40(11):1188-92. PubMed ID: 16153746
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex.
    Patri AK; Kukowska-Latallo JF; Baker JR
    Adv Drug Deliv Rev; 2005 Dec; 57(15):2203-14. PubMed ID: 16290254
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Polyamidoamine dendrimers surface-engineered with biomimetic phosphorylcholine as potential drug delivery carriers.
    Jia L; Xu JP; Wang H; Ji J
    Colloids Surf B Biointerfaces; 2011 May; 84(1):49-54. PubMed ID: 21237622
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Zwitterionic chitosan-polyamidoamine dendrimer complex nanoparticles as a pH-sensitive drug carrier.
    Liu KC; Yeo Y
    Mol Pharm; 2013 May; 10(5):1695-704. PubMed ID: 23510114
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of Folic Acid and Poly(amidoamine) Dendrimer Interactions with Folate Binding Protein: A Force-Pulling Study.
    Leroueil PR; DiMaggio S; Leistra AN; Blanchette CD; Orme C; Sinniah K; Orr BG; Banaszak Holl MM
    J Phys Chem B; 2015 Sep; 119(35):11506-12. PubMed ID: 26256755
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Encapsulation of micronutrients resveratrol, genistein, and curcumin by folic acid-PAMAM nanoparticles.
    Chanphai P; Tajmir-Riahi HA
    Mol Cell Biochem; 2018 Dec; 449(1-2):157-166. PubMed ID: 29786764
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Octreotide-conjugated PAMAM for targeted delivery to somatostatin receptors over-expressed tumor cells.
    Peng J; Qi X; Chen Y; Ma N; Zhang Z; Xing J; Zhu X; Li Z; Wu Z
    J Drug Target; 2014 Jun; 22(5):428-38. PubMed ID: 24437350
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Performance evaluation of PAMAM dendrimer based simvastatin formulations.
    Kulhari H; Pooja D; Prajapati SK; Chauhan AS
    Int J Pharm; 2011 Feb; 405(1-2):203-9. PubMed ID: 21145960
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Avidity modulation of folate-targeted multivalent dendrimers for evaluating biophysical models of cancer targeting nanoparticles.
    Silpe JE; Sumit M; Thomas TP; Huang B; Kotlyar A; van Dongen MA; Banaszak Holl MM; Orr BG; Choi SK
    ACS Chem Biol; 2013 Sep; 8(9):2063-71. PubMed ID: 23855478
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhancement of all-trans retinoic acid-induced differentiation by pH-sensitive nanoparticles for solid tumor cells.
    Wang Y; Wang H; Lv X; Liu C; Qi L; Song X; Yu A
    Macromol Biosci; 2014 Mar; 14(3):369-79. PubMed ID: 24115498
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Amino acid-functionalized dendrimers with heterobifunctional chemoselective peripheral groups for drug delivery applications.
    Navath RS; Menjoge AR; Wang B; Romero R; Kannan S; Kannan RM
    Biomacromolecules; 2010 Jun; 11(6):1544-63. PubMed ID: 20415504
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multifunctional dendrimer/combretastatin A4 inclusion complexes enable in vitro targeted cancer therapy.
    Zhang M; Guo R; Wang Y; Cao X; Shen M; Shi X
    Int J Nanomedicine; 2011; 6():2337-49. PubMed ID: 22072871
    [TBL] [Abstract][Full Text] [Related]  

  • 53. PAMAM dendrimers: destined for success or doomed to fail? Plain and modified PAMAM dendrimers in the context of biomedical applications.
    Labieniec-Watala M; Watala C
    J Pharm Sci; 2015 Jan; 104(1):2-14. PubMed ID: 25363074
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multifunctional dendrimer-modified multiwalled carbon nanotubes: synthesis, characterization, and in vitro cancer cell targeting and imaging.
    Shi X; Wang SH; Shen M; Antwerp ME; Chen X; Li C; Petersen EJ; Huang Q; Weber WJ; Baker JR
    Biomacromolecules; 2009 Jul; 10(7):1744-50. PubMed ID: 19459647
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ability to adapt: different generations of PAMAM dendrimers show different behaviors in binding siRNA.
    Pavan GM; Albertazzi L; Danani A
    J Phys Chem B; 2010 Mar; 114(8):2667-75. PubMed ID: 20146540
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of polyamidoamine (PAMAM) dendrimers as drug carriers of anti-bacterial drugs using sulfamethoxazole (SMZ) as a model drug.
    Ma M; Cheng Y; Xu Z; Xu P; Qu H; Fang Y; Xu T; Wen L
    Eur J Med Chem; 2007 Jan; 42(1):93-8. PubMed ID: 17095123
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fractal growth of PAMAM dendrimer aggregates and its impact on the intrinsic emission properties.
    Jasmine MJ; Prasad E
    J Phys Chem B; 2010 Jun; 114(23):7735-42. PubMed ID: 20496918
    [TBL] [Abstract][Full Text] [Related]  

  • 58. DNA binding efficacy with functionalized folic acid-PAMAM nanoparticles.
    Chanphai P; Tajmir-Riahi HA
    Chem Biol Interact; 2018 Jun; 290():52-56. PubMed ID: 29800572
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impact of dendrimer surface functional groups on the release of doxorubicin from dendrimer carriers.
    Zhang M; Guo R; Kéri M; Bányai I; Zheng Y; Cao M; Cao X; Shi X
    J Phys Chem B; 2014 Feb; 118(6):1696-706. PubMed ID: 24467521
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Light-controlled release of caged doxorubicin from folate receptor-targeting PAMAM dendrimer nanoconjugate.
    Choi SK; Thomas T; Li MH; Kotlyar A; Desai A; Baker JR
    Chem Commun (Camb); 2010 Apr; 46(15):2632-4. PubMed ID: 20449327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.