BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 24412502)

  • 1. How do resources influence control measures during a simulated outbreak of foot and mouth disease in Australia?
    Roche SE; Garner MG; Wicks RM; East IJ; de Witte K
    Prev Vet Med; 2014 Mar; 113(4):436-46. PubMed ID: 24412502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Options for managing animal welfare on intensive pig farms confined by movement restrictions during an outbreak of foot and mouth disease.
    East IJ; Roche SE; Wicks RM; de Witte K; Garner MG
    Prev Vet Med; 2014 Dec; 117(3-4):533-41. PubMed ID: 25457134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of control and surveillance strategies for classical swine fever using a simulation model.
    Dürr S; Zu Dohna H; Di Labio E; Carpenter TE; Doherr MG
    Prev Vet Med; 2013 Jan; 108(1):73-84. PubMed ID: 22858424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing control strategies against foot-and-mouth disease: will vaccination be cost-effective in Denmark?
    Boklund A; Halasa T; Christiansen LE; Enøe C
    Prev Vet Med; 2013 Sep; 111(3-4):206-19. PubMed ID: 23791121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical model of the 2010 foot-and-mouth disease epidemic in Japan and evaluation of control measures.
    Hayama Y; Yamamoto T; Kobayashi S; Muroga N; Tsutsui T
    Prev Vet Med; 2013 Nov; 112(3-4):183-93. PubMed ID: 24034814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foot-and-Mouth disease control using vaccination: the Dutch experience in 2001.
    Pluimers FH
    Dev Biol (Basel); 2004; 119():41-9. PubMed ID: 15742617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vaccination against foot-and-mouth disease I: epidemiological consequences.
    Backer JA; Hagenaars TJ; Nodelijk G; van Roermund HJ
    Prev Vet Med; 2012 Nov; 107(1-2):27-40. PubMed ID: 22749763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impacts of constrained culling and vaccination on control of foot and mouth disease in near-endemic settings: a pair approximation model.
    Ringa N; Bauch CT
    Epidemics; 2014 Dec; 9():18-30. PubMed ID: 25480131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classical swine fever outbreak containment using antiviral supplementation: a potential alternative to emergency vaccination and stamping-out.
    Ribbens S; Goris N; Neyts J; Dewulf J
    Prev Vet Med; 2012 Sep; 106(1):34-41. PubMed ID: 22465433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating Resource Requirements to Staff a Response to a Medium to Large Outbreak of Foot and Mouth Disease in Australia.
    Garner MG; Bombarderi N; Cozens M; Conway ML; Wright T; Paskin R; East IJ
    Transbound Emerg Dis; 2016 Feb; 63(1):e109-21. PubMed ID: 24894407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the impact of vaccination control strategies on a foot and mouth disease outbreak in the Central United States.
    McReynolds SW; Sanderson MW; Reeves A; Hill AE
    Prev Vet Med; 2014 Dec; 117(3-4):487-504. PubMed ID: 25457133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the benefits of vaccination when used in combination with stamping-out measures against hypothetical introductions of foot-and-mouth disease into New Zealand: a simulation study.
    Sanson RL; Rawdon T; Owen K; Hickey K; van Andel M; Yu ZD
    N Z Vet J; 2017 May; 65(3):124-133. PubMed ID: 27870922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the benefit of emergency vaccination in a foot-and-mouth disease free country with low livestock density.
    Dürr S; Fasel-Clemenz C; Thür B; Schwermer H; Doherr MG; Dohna HZ; Carpenter TE; Perler L; Hadorn DC
    Prev Vet Med; 2014 Jan; 113(1):34-46. PubMed ID: 24211105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation analyses to evaluate alternative control strategies for the 2002 foot-and-mouth disease outbreak in the Republic of Korea.
    Yoon H; Wee SH; Stevenson MA; O'Leary BD; Morris RS; Hwang IJ; Park CK; Stern MW
    Prev Vet Med; 2006 May; 74(2-3):212-25. PubMed ID: 16423417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling foot and mouth disease.
    Thornley JH; France J
    Prev Vet Med; 2009 Jun; 89(3-4):139-54. PubMed ID: 19328567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating vaccination strategies to control foot-and-mouth disease: a country comparison study.
    Rawdon TG; Garner MG; Sanson RL; Stevenson MA; Cook C; Birch C; Roche SE; Patyk KA; Forde-Folle KN; Dubé C; Smylie T; Yu ZD
    Epidemiol Infect; 2018 Jul; 146(9):1138-1150. PubMed ID: 29785893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vaccination as a control measure during the outbreak of foot-and-mouth disease in 2000 in Korea.
    Park JH; Park JY; Kim YJ; Oem JK; Lee KN; Kye SJ; Joo YS
    Dev Biol (Basel); 2004; 119():63-70. PubMed ID: 15742619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling foot-and-mouth disease transmission in a wild pig-domestic cattle ecosystem.
    Ward MP; Garner MG; Cowled BD
    Aust Vet J; 2015; 93(1-2):4-12. PubMed ID: 25622702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling vaccination strategies against foot-and-mouth disease.
    Keeling MJ; Woolhouse ME; May RM; Davies G; Grenfell BT
    Nature; 2003 Jan; 421(6919):136-42. PubMed ID: 12508120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmission risks and control of foot-and-mouth disease in The Netherlands: spatial patterns.
    Boender GJ; van Roermund HJ; de Jong MC; Hagenaars TJ
    Epidemics; 2010 Mar; 2(1):36-47. PubMed ID: 21352775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.