BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 24412507)

  • 41. Detoxification of acidic biorefinery waste liquor for production of high value amino acid.
    Christopher M; Anusree M; Mathew AK; Nampoothiri KM; Sukumaran RK; Pandey A
    Bioresour Technol; 2016 Aug; 213():270-275. PubMed ID: 26996259
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Efficient catalytic system for the direct transformation of lignocellulosic biomass to furfural and 5-hydroxymethylfurfural.
    Zhang L; Xi G; Zhang J; Yu H; Wang X
    Bioresour Technol; 2017 Jan; 224():656-661. PubMed ID: 27913172
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A sustainable woody biomass biorefinery.
    Liu S; Lu H; Hu R; Shupe A; Lin L; Liang B
    Biotechnol Adv; 2012; 30(4):785-810. PubMed ID: 22306164
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Furfural and 5-hydroxymethyl-furfural degradation using recombinant manganese peroxidase.
    Yee KL; Jansen LE; Lajoie CA; Penner MH; Morse L; Kelly CJ
    Enzyme Microb Technol; 2018 Jan; 108():59-65. PubMed ID: 29108628
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of lignin-derived and furan compounds found in lignocellulosic hydrolysates on biomethane production.
    Barakat A; Monlau F; Steyer JP; Carrere H
    Bioresour Technol; 2012 Jan; 104():90-9. PubMed ID: 22100239
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The optimization of dilute acid hydrolysis of cotton stalk in xylose production.
    Akpinar O; Levent O; Bostanci S; Bakir U; Yilmaz L
    Appl Biochem Biotechnol; 2011 Jan; 163(2):313-25. PubMed ID: 20652763
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 5-Hydroxymethylfurfural (HMF) Production from Real Biomasses.
    Menegazzo F; Ghedini E; Signoretto M
    Molecules; 2018 Aug; 23(9):. PubMed ID: 30200287
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase.
    Ask M; Bettiga M; Duraiswamy VR; Olsson L
    Biotechnol Biofuels; 2013 Dec; 6(1):181. PubMed ID: 24341320
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Catalytic conversion of corncob and corncob pretreatment hydrolysate to furfural in a biphasic system with addition of sodium chloride.
    Qing Q; Guo Q; Zhou L; Wan Y; Xu Y; Ji H; Gao X; Zhang Y
    Bioresour Technol; 2017 Feb; 226():247-254. PubMed ID: 28011239
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Culture nutrition and physiology impact the inhibitor tolerance of the yeast Pichia stipitis NRRL Y-7124.
    Slininger PJ; Gorsich SW; Liu ZL
    Biotechnol Bioeng; 2009 Feb; 102(3):778-90. PubMed ID: 18823052
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Conversion of raw lignocellulosic biomass into branched long-chain alkanes through three tandem steps.
    Li C; Ding D; Xia Q; Liu X; Wang Y
    ChemSusChem; 2016 Jul; 9(13):1712-8. PubMed ID: 27241180
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Furfural--a promising platform for lignocellulosic biofuels.
    Lange JP; van der Heide E; van Buijtenen J; Price R
    ChemSusChem; 2012 Jan; 5(1):150-66. PubMed ID: 22213717
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Kinetics of levulinic acid and furfural production from Miscanthus × giganteus.
    Dussan K; Girisuta B; Haverty D; Leahy JJ; Hayes MH
    Bioresour Technol; 2013 Dec; 149():216-24. PubMed ID: 24103645
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Removal and recovery of furfural, 5-hydroxymethylfurfural, and acetic acid from aqueous solutions using a soluble polyelectrolyte.
    Carter B; Gilcrease PC; Menkhaus TJ
    Biotechnol Bioeng; 2011 Sep; 108(9):2046-52. PubMed ID: 21455937
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biological synthesis of 2,5-bis(hydroxymethyl)furan from biomass-derived 5-hydroxymethylfurfural by E. coli CCZU-K14 whole cells.
    He YC; Jiang CX; Chong GG; Di JH; Ma CL
    Bioresour Technol; 2018 Jan; 247():1215-1220. PubMed ID: 28943097
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Alcoholysis: A Promising Technology for Conversion of Lignocellulose and Platform Chemicals.
    Zhu S; Guo J; Wang X; Wang J; Fan W
    ChemSusChem; 2017 Jun; 10(12):2547-2559. PubMed ID: 28485128
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Catalytic valorisation of various paper wastes into levulinic acid, hydroxymethylfurfural, and furfural: Influence of feedstock properties and ferric chloride.
    Dutta S; Zhang Q; Cao Y; Wu C; Moustakas K; Zhang S; Wong KH; Tsang DCW
    Bioresour Technol; 2022 Aug; 357():127376. PubMed ID: 35623603
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis of lignin-carbohydrate complex-based catalyst from Eragrostis tef straw and its catalytic performance in xylose dehydration to furfural.
    Dulie NW; Woldeyes B; Demsash HD
    Int J Biol Macromol; 2021 Feb; 171():10-16. PubMed ID: 33412194
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparison of furfural and biogas production using pentoses as platform.
    Aristizábal-Marulanda V; Poveda-Giraldo JA; Cardona Alzate CA
    Sci Total Environ; 2020 Aug; 728():138841. PubMed ID: 32361121
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.