These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 24412563)

  • 1. A gamma-gamma coincidence/anticoincidence spectrometer for low-level cosmogenic (22)Na/(7)Be activity ratio measurement.
    Zhang W; Ungar K; Stukel M; Mekarski P
    J Environ Radioact; 2014 Apr; 130():1-6. PubMed ID: 24412563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The development of a digital gamma-gamma coincidence/anticoincidence spectrometer and its applications to monitor low-level atmospheric
    Zhang W; Lam K; Ungar K
    J Environ Radioact; 2018 Dec; 192():434-439. PubMed ID: 30064089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of 235U and 238U activity concentrations for undeclared nuclear materials by a digital gamma-gamma coincidence spectroscopy.
    Zhang W; Yi J; Mekarski P; Ungar K; Hauck B; Kramer GH
    Appl Radiat Isot; 2011 Jun; 69(6):904-7. PubMed ID: 21411329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cosmic-muon intensity measurement and overburden estimation in a building at surface level and in an underground facility using two BC408 scintillation detectors coincidence counting system.
    Zhang W; Ungar K; Liu C; Mailhot M
    J Environ Radioact; 2016 Oct; 162-163():340-346. PubMed ID: 27340860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cosmogenic (7)Be and (22)Na in ground level air in Switzerland (1994-2011).
    Steinmann P; Zeller M; Beuret P; Ferreri G; Estier S
    J Environ Radioact; 2013 Oct; 124():68-73. PubMed ID: 23665565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beta-ray imaging system with γ-ray coincidence for multiple-tracer imaging.
    Fukuchi T; Yamamoto S; Kataoka J; Kamada K; Yoshikawa A; Watanabe Y; Enomoto S
    Med Phys; 2020 Feb; 47(2):587-596. PubMed ID: 31800969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity measurement of gamma-ray emitters in aerosol filters exposed in Lithuania, in March-April 2011.
    Gudelis A; Gorina I; Nedveckaitė T; Kovař P; Dryak P; Suran J
    Appl Radiat Isot; 2013 Nov; 81():362-5. PubMed ID: 23541789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying radionuclide signatures from a γ-γ coincidence system.
    Britton R; Jackson MJ; Davies AV
    J Environ Radioact; 2015 Nov; 149():158-63. PubMed ID: 26254208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance evaluation and optimization for a newly developed digital list-mode data acquisition Compton suppression spectrometer.
    Zhang W; Keeshan B; Mekarski P; Yi J; Ungar K
    Appl Radiat Isot; 2013 Nov; 81():96-102. PubMed ID: 23497957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-efficiency HPGe coincidence system for environmental analysis.
    Britton R; Davies AV; Burnett JL; Jackson MJ
    J Environ Radioact; 2015 Aug; 146():1-5. PubMed ID: 25875083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of NaI(Tl) detector for measurement of natural radionuclides and (137)Cs in environmental samples: new approach by decomposition of measured spectrum.
    Muminov IT; Muhamedov AK; Osmanov BS; Safarov AA; Safarov AN
    J Environ Radioact; 2005; 84(3):321-31. PubMed ID: 16009470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of modern anticoincidence (AC) system in HPGe γ-spectrometry for the detection limit lowering of the radionuclides in air filters.
    Długosz-Lisiecka M
    J Environ Radioact; 2017 Apr; 169-170():104-108. PubMed ID: 28110196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Standardization of 152Eu and 154Eu by 4pibeta-4pigamma coincidence method and 4pi(beta+gamma) integral counting.
    Yamada T; Nakamura Y; Kawada Y; Sato Y; Hino Y
    Appl Radiat Isot; 2006; 64(10-11):1220-4. PubMed ID: 16618542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of atmospherical radon to in-situ scintillation gamma spectrometry data.
    Klusoň J; Thinová L
    Appl Radiat Isot; 2011 Aug; 69(8):1143-5. PubMed ID: 21129988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low level radioactivity measurements with phoswich detectors using coincident techniques and digital pulse processing analysis.
    de la Fuente R; de Celis B; del Canto V; Lumbreras JM; de Celis Alonso B; Martín-Martín A; Gutierrez-Villanueva JL
    J Environ Radioact; 2008 Oct; 99(10):1553-7. PubMed ID: 18243443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radioactivity measurements in the aquatic environment using in-situ and laboratory gamma-ray spectrometry.
    Eleftheriou G; Tsabaris C; Androulakaki EG; Patiris DL; Kokkoris M; Kalfas CA; Vlastou R
    Appl Radiat Isot; 2013 Dec; 82():268-78. PubMed ID: 24103707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring the radium-226 activity using a multidetector gamma-ray coincidence spectrometer.
    Antovic N; Svrkota N
    J Environ Radioact; 2009 Oct; 100(10):823-30. PubMed ID: 19577345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An anticoincidence-shielded gamma-ray spectrometer for analysis of low level environmental radionuclides.
    Byun JI; Choi YH; Kwak SI; Hwang HY; Chung KH; Choi GS; Park DW; Lee CW
    Appl Radiat Isot; 2003 May; 58(5):579-83. PubMed ID: 12735975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Negative correlation between the number of sunspots and the occurrence of 7Be and 22Na in the surface air and their contribution to radiation doses.
    Brodnik D; Glavič-Cindro D; Korun M; Nečemer M; Maver-Modec P; Petrovič T; Vidmar T; Vodenik B; Zorko B
    Arh Hig Rada Toksikol; 2019 Dec; 70(4):290-295. PubMed ID: 32623855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CeBr
    Dal Bello R; Magalhaes Martins P; Seco J
    Med Phys; 2018 Apr; 45(4):1622-1630. PubMed ID: 29411400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.