These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 24412641)

  • 21. Opportunities and challenges in the wider adoption of liver and interconnected microphysiological systems.
    Hughes DJ; Kostrzewski T; Sceats EL
    Exp Biol Med (Maywood); 2017 Oct; 242(16):1593-1604. PubMed ID: 28504617
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform.
    Skardal A; Murphy SV; Devarasetty M; Mead I; Kang HW; Seol YJ; Shrike Zhang Y; Shin SR; Zhao L; Aleman J; Hall AR; Shupe TD; Kleensang A; Dokmeci MR; Jin Lee S; Jackson JD; Yoo JJ; Hartung T; Khademhosseini A; Soker S; Bishop CE; Atala A
    Sci Rep; 2017 Aug; 7(1):8837. PubMed ID: 28821762
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adoption of organ-on-chip platforms by the pharmaceutical industry.
    Vulto P; Joore J
    Nat Rev Drug Discov; 2021 Dec; 20(12):961-962. PubMed ID: 34646035
    [No Abstract]   [Full Text] [Related]  

  • 24. 3D in vitro technology for drug discovery.
    Hosseinkhani H
    Curr Drug Saf; 2012 Feb; 7(1):37-43. PubMed ID: 22663957
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent advances in microfluidic technologies for cell-to-cell interaction studies.
    Rothbauer M; Zirath H; Ertl P
    Lab Chip; 2018 Jan; 18(2):249-270. PubMed ID: 29143053
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling the Human Body on Microfluidic Chips.
    Jalili-Firoozinezhad S; Miranda CC; Cabral JMS
    Trends Biotechnol; 2021 Aug; 39(8):838-852. PubMed ID: 33581889
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology.
    Watson DE; Hunziker R; Wikswo JP
    Exp Biol Med (Maywood); 2017 Oct; 242(16):1559-1572. PubMed ID: 29065799
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Organs-on-a-chip: a focus on compartmentalized microdevices.
    Moraes C; Mehta G; Lesher-Perez SC; Takayama S
    Ann Biomed Eng; 2012 Jun; 40(6):1211-27. PubMed ID: 22065201
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent Progress in Hepatocyte Culture Models and Their Application to the Assessment of Drug Metabolism, Transport, and Toxicity in Drug Discovery: The Value of Tissue Engineering for the Successful Development of a Microphysiological System.
    Tetsuka K; Ohbuchi M; Tabata K
    J Pharm Sci; 2017 Sep; 106(9):2302-2311. PubMed ID: 28533121
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A cost-effective micromilling platform for rapid prototyping of microdevices.
    Yen DP; Ando Y; Shen K
    Technology (Singap World Sci); 2016 Dec; 4(4):234-239. PubMed ID: 28317005
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Organ-on-a-chip technologies that can transform ophthalmic drug discovery and disease modeling.
    Haderspeck JC; Chuchuy J; Kustermann S; Liebau S; Loskill P
    Expert Opin Drug Discov; 2019 Jan; 14(1):47-57. PubMed ID: 30526132
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microdevices for nanomedicine.
    Hashimoto M; Tong R; Kohane DS
    Mol Pharm; 2013 Jun; 10(6):2127-44. PubMed ID: 23521558
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A multi-organ-chip co-culture of liver and testis equivalents: a first step toward a systemic male reprotoxicity model.
    Baert Y; Ruetschle I; Cools W; Oehme A; Lorenz A; Marx U; Goossens E; Maschmeyer I
    Hum Reprod; 2020 May; 35(5):1029-1044. PubMed ID: 32390056
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and demonstration of a pumpless 14 compartment microphysiological system.
    Miller PG; Shuler ML
    Biotechnol Bioeng; 2016 Oct; 113(10):2213-27. PubMed ID: 27070809
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clinical applications of biomedical microdevices for controlled drug delivery.
    Gurman P; Miranda OR; Clayton K; Rosen Y; Elman NM
    Mayo Clin Proc; 2015 Jan; 90(1):93-108. PubMed ID: 25484235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Next generation human skin constructs as advanced tools for drug development.
    Abaci HE; Guo Z; Doucet Y; Jacków J; Christiano A
    Exp Biol Med (Maywood); 2017 Nov; 242(17):1657-1668. PubMed ID: 28592171
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent lab-on-chip developments for novel drug discovery.
    Khalid N; Kobayashi I; Nakajima M
    Wiley Interdiscip Rev Syst Biol Med; 2017 Jul; 9(4):. PubMed ID: 28211993
    [TBL] [Abstract][Full Text] [Related]  

  • 38. μOrgano: A Lego®-Like Plug & Play System for Modular Multi-Organ-Chips.
    Loskill P; Marcus SG; Mathur A; Reese WM; Healy KE
    PLoS One; 2015; 10(10):e0139587. PubMed ID: 26440672
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tissue Chips to aid drug development and modeling for rare diseases.
    Low LA; Tagle DA
    Expert Opin Orphan Drugs; 2016; 4(11):1113-1121. PubMed ID: 28626620
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The use of skin models in drug development.
    Mathes SH; Ruffner H; Graf-Hausner U
    Adv Drug Deliv Rev; 2014 Apr; 69-70():81-102. PubMed ID: 24378581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.