BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

460 related articles for article (PubMed ID: 24412649)

  • 1. Dopamine precursor depletion impairs structure and efficiency of resting state brain functional networks.
    Carbonell F; Nagano-Saito A; Leyton M; Cisek P; Benkelfat C; He Y; Dagher A
    Neuropharmacology; 2014 Sep; 84():90-100. PubMed ID: 24412649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiency of a "small-world" brain network depends on consciousness level: a resting-state FMRI study.
    Uehara T; Yamasaki T; Okamoto T; Koike T; Kan S; Miyauchi S; Kira J; Tobimatsu S
    Cereb Cortex; 2014 Jun; 24(6):1529-39. PubMed ID: 23349223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Network-specific effects of age and in-scanner subject motion: a resting-state fMRI study of 238 healthy adults.
    Mowinckel AM; Espeseth T; Westlye LT
    Neuroimage; 2012 Nov; 63(3):1364-73. PubMed ID: 22992492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulating brain connectivity with δ⁹-tetrahydrocannabinol: a pharmacological resting state FMRI study.
    Klumpers LE; Cole DM; Khalili-Mahani N; Soeter RP; Te Beek ET; Rombouts SA; van Gerven JM
    Neuroimage; 2012 Nov; 63(3):1701-11. PubMed ID: 22885247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical parametric network analysis of functional connectivity dynamics during a working memory task.
    Ginestet CE; Simmons A
    Neuroimage; 2011 Mar; 55(2):688-704. PubMed ID: 21095229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in structural and functional connectivity among resting-state networks across the human lifespan.
    Betzel RF; Byrge L; He Y; Goñi J; Zuo XN; Sporns O
    Neuroimage; 2014 Nov; 102 Pt 2():345-57. PubMed ID: 25109530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing dynamic functional connectivity in the resting brain using variable parameter regression and Kalman filtering approaches.
    Kang J; Wang L; Yan C; Wang J; Liang X; He Y
    Neuroimage; 2011 Jun; 56(3):1222-34. PubMed ID: 21420500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different topological organization of human brain functional networks with eyes open versus eyes closed.
    Xu P; Huang R; Wang J; Van Dam NT; Xie T; Dong Z; Chen C; Gu R; Zang YF; He Y; Fan J; Luo YJ
    Neuroimage; 2014 Apr; 90():246-55. PubMed ID: 24434242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using resting state functional connectivity to unravel networks of tinnitus.
    Husain FT; Schmidt SA
    Hear Res; 2014 Jan; 307():153-62. PubMed ID: 23895873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Test-retest reliability of fMRI-based graph theoretical properties during working memory, emotion processing, and resting state.
    Cao H; Plichta MM; Schäfer A; Haddad L; Grimm O; Schneider M; Esslinger C; Kirsch P; Meyer-Lindenberg A; Tost H
    Neuroimage; 2014 Jan; 84():888-900. PubMed ID: 24055506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state.
    Carbonell F; Bellec P; Shmuel A
    Neuroimage; 2014 Feb; 86():343-53. PubMed ID: 24128734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain.
    van den Heuvel MP; Stam CJ; Boersma M; Hulshoff Pol HE
    Neuroimage; 2008 Nov; 43(3):528-39. PubMed ID: 18786642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative comparison of resting-state functional connectivity derived from fNIRS and fMRI: a simultaneous recording study.
    Duan L; Zhang YJ; Zhu CZ
    Neuroimage; 2012 May; 60(4):2008-18. PubMed ID: 22366082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential and distributed effects of dopamine neuromodulations on resting-state network connectivity.
    Cole DM; Beckmann CF; Oei NY; Both S; van Gerven JM; Rombouts SA
    Neuroimage; 2013 Sep; 78():59-67. PubMed ID: 23603346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resting state networks in empirical and simulated dynamic functional connectivity.
    Glomb K; Ponce-Alvarez A; Gilson M; Ritter P; Deco G
    Neuroimage; 2017 Oct; 159():388-402. PubMed ID: 28782678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-parametric model selection for subject-specific topological organization of resting-state functional connectivity.
    Ferrarini L; Veer IM; van Lew B; Oei NY; van Buchem MA; Reiber JH; Rombouts SA; Milles J
    Neuroimage; 2011 Jun; 56(3):1453-62. PubMed ID: 21338693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining spatial independent component analysis with regression to identify the subcortical components of resting-state FMRI functional networks.
    Malherbe C; Messé A; Bardinet E; Pélégrini-Issac M; Perlbarg V; Marrelec G; Worbe Y; Yelnik J; Lehéricy S; Benali H
    Brain Connect; 2014 Apr; 4(3):181-92. PubMed ID: 24575752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the brain network: a review on resting-state fMRI functional connectivity.
    van den Heuvel MP; Hulshoff Pol HE
    Eur Neuropsychopharmacol; 2010 Aug; 20(8):519-34. PubMed ID: 20471808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An investigation into the functional and structural connectivity of the Default Mode Network.
    van Oort ES; van Cappellen van Walsum AM; Norris DG
    Neuroimage; 2014 Apr; 90():381-9. PubMed ID: 24382524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resting network is composed of more than one neural pattern: an fMRI study.
    Lee TW; Northoff G; Wu YT
    Neuroscience; 2014 Aug; 274():198-208. PubMed ID: 24881572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.