BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1784 related articles for article (PubMed ID: 24412651)

  • 1. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits.
    De Vadder F; Kovatcheva-Datchary P; Goncalves D; Vinera J; Zitoun C; Duchampt A; Bäckhed F; Mithieux G
    Cell; 2014 Jan; 156(1-2):84-96. PubMed ID: 24412651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis.
    De Vadder F; Kovatcheva-Datchary P; Zitoun C; Duchampt A; Bäckhed F; Mithieux G
    Cell Metab; 2016 Jul; 24(1):151-7. PubMed ID: 27411015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intestinal glucose metabolism revisited.
    Mithieux G; Gautier-Stein A
    Diabetes Res Clin Pract; 2014 Sep; 105(3):295-301. PubMed ID: 24969963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of energy metabolism associated with NUTRIOSE® soluble fiber, a dietary ingredient exhibiting prebiotic properties, requires intestinal gluconeogenesis.
    Vily-Petit J; Soty M; Silva M; Micoud M; Bron C; Guérin-Deremaux L; Mithieux G
    Food Res Int; 2023 May; 167():112723. PubMed ID: 37087279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gut nutrient sensing and microbiota function in the control of energy homeostasis.
    Mithieux G
    Curr Opin Clin Nutr Metab Care; 2018 Jul; 21(4):273-276. PubMed ID: 29847448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dietary Fibers and Proteins Modulate Behavior via the Activation of Intestinal Gluconeogenesis.
    Sinet F; Soty M; Zemdegs J; Guiard B; Estrada J; Malleret G; Silva M; Mithieux G; Gautier-Stein A
    Neuroendocrinology; 2021; 111(12):1249-1265. PubMed ID: 33429400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Intestinal gluconeogenesis: an insulin-mimetic function].
    Mithieux G
    Biol Aujourdhui; 2022; 216(1-2):37-39. PubMed ID: 35876519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intestinal gluconeogenesis shapes gut microbiota, fecal and urine metabolome in mice with gastric bypass surgery.
    Vily-Petit J; Barataud A; Zitoun C; Gautier-Stein A; Serino M; Mithieux G
    Sci Rep; 2022 Jan; 12(1):1415. PubMed ID: 35082330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gut-brain signaling in energy homeostasis: the unexpected role of microbiota-derived succinate.
    de Vadder F; Mithieux G
    J Endocrinol; 2018 Feb; 236(2):R105-R108. PubMed ID: 29321189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain-gut axis alterations.
    van de Wouw M; Boehme M; Lyte JM; Wiley N; Strain C; O'Sullivan O; Clarke G; Stanton C; Dinan TG; Cryan JF
    J Physiol; 2018 Oct; 596(20):4923-4944. PubMed ID: 30066368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms.
    Lin HV; Frassetto A; Kowalik EJ; Nawrocki AR; Lu MM; Kosinski JR; Hubert JA; Szeto D; Yao X; Forrest G; Marsh DJ
    PLoS One; 2012; 7(4):e35240. PubMed ID: 22506074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis.
    Portincasa P; Bonfrate L; Vacca M; De Angelis M; Farella I; Lanza E; Khalil M; Wang DQ; Sperandio M; Di Ciaula A
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gut microbiota and energy balance: role in obesity.
    Blaut M
    Proc Nutr Soc; 2015 Aug; 74(3):227-34. PubMed ID: 25518735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of dietary fibers and their mixtures on short chain fatty acids and microbiota in mice guts.
    Peng X; Li S; Luo J; Wu X; Liu L
    Food Funct; 2013 Jun; 4(6):932-8. PubMed ID: 23669739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of short chain fatty acids in appetite regulation and energy homeostasis.
    Byrne CS; Chambers ES; Morrison DJ; Frost G
    Int J Obes (Lond); 2015 Sep; 39(9):1331-8. PubMed ID: 25971927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids.
    den Besten G; Lange K; Havinga R; van Dijk TH; Gerding A; van Eunen K; Müller M; Groen AK; Hooiveld GJ; Bakker BM; Reijngoud DJ
    Am J Physiol Gastrointest Liver Physiol; 2013 Dec; 305(12):G900-10. PubMed ID: 24136789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vasoactive intestinal peptide is a local mediator in a gut-brain neural axis activating intestinal gluconeogenesis.
    De Vadder F; Plessier F; Gautier-Stein A; Mithieux G
    Neurogastroenterol Motil; 2015 Mar; 27(3):443-8. PubMed ID: 25586379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Host energy regulation via SCFAs receptors, as dietary nutrition sensors, by gut microbiota].
    Kimura I
    Yakugaku Zasshi; 2014; 134(10):1037-42. PubMed ID: 25274213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis.
    Sivaprakasam S; Prasad PD; Singh N
    Pharmacol Ther; 2016 Aug; 164():144-51. PubMed ID: 27113407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A gut-brain neural circuit controlled by intestinal gluconeogenesis is crucial in metabolic health.
    Soty M; Penhoat A; Amigo-Correig M; Vinera J; Sardella A; Vullin-Bouilloux F; Zitoun C; Houberdon I; Mithieux G
    Mol Metab; 2015 Feb; 4(2):106-17. PubMed ID: 25685698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 90.