These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 24412775)
41. The level and distribution of ²²⁰Rn concentration in soil-gas in Guangdong Province, China. Wang N; Peng A; Xiao L; Chu X; Yin Y; Qin C; Zheng L Radiat Prot Dosimetry; 2012 Nov; 152(1-3):204-9. PubMed ID: 22923249 [TBL] [Abstract][Full Text] [Related]
42. Daily and seasonal variations in radon activity concentration in the soil air. Műllerová M; Holý K; Bulko M Radiat Prot Dosimetry; 2014 Jul; 160(1-3):222-5. PubMed ID: 24714111 [TBL] [Abstract][Full Text] [Related]
43. Pilot study of the application of Tellus airborne radiometric and soil geochemical data for radon mapping. Appleton JD; Miles JC; Green BM; Larmour R J Environ Radioact; 2008 Oct; 99(10):1687-97. PubMed ID: 18562054 [TBL] [Abstract][Full Text] [Related]
44. Detection properties of a measuring system for a continuous soil radon concentrations monitoring. Fronka A; Moucka L; Jerábek M Radiat Prot Dosimetry; 2008; 130(1):56-9. PubMed ID: 18407971 [TBL] [Abstract][Full Text] [Related]
45. Long-term monitoring of soil gas radon and permeability at two reference sites. Chen J; Falcomer R; Ly J; Wierdsma J; Bergman L Radiat Prot Dosimetry; 2008; 131(4):503-8. PubMed ID: 18922821 [TBL] [Abstract][Full Text] [Related]
46. Mapping of the geogenic radon potential in France to improve radon risk management: methodology and first application to region Bourgogne. Ielsch G; Cushing ME; Combes P; Cuney M J Environ Radioact; 2010 Oct; 101(10):813-20. PubMed ID: 20471142 [TBL] [Abstract][Full Text] [Related]
47. Radiological characterisation of Artvin and Ardahan provinces of Turkey. Kucukomeroglu B; Yesilbag YO; Kurnaz A; Celik N; Cevik U; Celebi N Radiat Prot Dosimetry; 2011 Jun; 145(4):389-94. PubMed ID: 21131329 [TBL] [Abstract][Full Text] [Related]
48. Methodology developed to make the Quebec indoor radon potential map. Drolet JP; Martel R; Poulin P; Dessau JC Sci Total Environ; 2014 Mar; 473-474():372-80. PubMed ID: 24378928 [TBL] [Abstract][Full Text] [Related]
49. Determination of indoor radon and soil radioactivity levels in Giresun, Turkey. Celik N; Cevik U; Celik A; Kucukomeroglu B J Environ Radioact; 2008 Aug; 99(8):1349-54. PubMed ID: 18501486 [TBL] [Abstract][Full Text] [Related]
50. Combination of geological data and radon survey results for radon mapping. Zhukovsky M; Yarmoshenko I; Kiselev S J Environ Radioact; 2012 Oct; 112():1-3. PubMed ID: 22466302 [TBL] [Abstract][Full Text] [Related]
51. Evaluation of tectonically enhanced radon in fault zones by quantification of the radon activity index. Benà E; Ciotoli G; Ruggiero L; Coletti C; Bossew P; Massironi M; Mazzoli C; Mair V; Morelli C; Galgaro A; Morozzi P; Tositti L; Sassi R Sci Rep; 2022 Dec; 12(1):21586. PubMed ID: 36517656 [TBL] [Abstract][Full Text] [Related]
52. An approach to improve the Austrian Radon Potential Map by Bayesian statistics. Friedmann H; Gröller J J Environ Radioact; 2010 Oct; 101(10):804-8. PubMed ID: 20022149 [TBL] [Abstract][Full Text] [Related]
53. Spatial distribution of soil radon as a tool to recognize active faulting on an active volcano: the example of Mt. Etna (Italy). Neri M; Giammanco S; Ferrera E; Patanè G; Zanon V J Environ Radioact; 2011 Sep; 102(9):863-70. PubMed ID: 21704438 [TBL] [Abstract][Full Text] [Related]
54. Radon in soil gas in Kosovo. Kikaj D; Jeran Z; Bahtijari M; Stegnar P J Environ Radioact; 2016 Nov; 164():245-252. PubMed ID: 27522328 [TBL] [Abstract][Full Text] [Related]
55. Comparison of Northern Ireland radon maps based on indoor radon measurements and geology with maps derived by predictive modelling of airborne radiometric and ground permeability data. Appleton JD; Miles JC; Young M Sci Total Environ; 2011 Mar; 409(8):1572-83. PubMed ID: 21310464 [TBL] [Abstract][Full Text] [Related]
56. Cross-border radon index map 1:100 000 Lausitz - Jizera - Karkonosze - Region (northern part of the Bohemian Massif). Barnet I; Pacherová P; Preusse W; Stec B J Environ Radioact; 2010 Oct; 101(10):809-12. PubMed ID: 20022148 [TBL] [Abstract][Full Text] [Related]
57. Criteria of radon risk of territories and methods for their determination. Ryzhakova NK Appl Radiat Isot; 2014 Sep; 91():161-4. PubMed ID: 24950198 [TBL] [Abstract][Full Text] [Related]
58. An approach to define potential radon emission level maps using indoor radon concentration measurements and radiogeochemical data positive proportion relationships. Drolet JP; Martel R; Poulin P; Dessau JC; Lavoie D; Parent M; Lévesque B J Environ Radioact; 2013 Oct; 124():57-67. PubMed ID: 23660346 [TBL] [Abstract][Full Text] [Related]
59. Estimation of soil gas permeability for assessing radon risk using Rosetta pedotransfer function based on soil texture and water content. Benavente D; Valdés-Abellán J; Pla C; Sanz-Rubio E J Environ Radioact; 2019 Nov; 208-209():105992. PubMed ID: 31226584 [TBL] [Abstract][Full Text] [Related]
60. A comparative study of the indoor radon level with the radon exhalation rate from soil in Alexandria city. Abd El-Zaher M Radiat Prot Dosimetry; 2013 May; 154(4):490-6. PubMed ID: 23070484 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]