These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 24413019)
1. Towards neural correlates of auditory stimulus processing: a simultaneous auditory evoked potentials and functional magnetic resonance study using an odd-ball paradigm. Milner R; Rusiniak M; Lewandowska M; Wolak T; Ganc M; Piątkowska-Janko E; Bogorodzki P; Skarżyński H Med Sci Monit; 2014 Jan; 20():35-46. PubMed ID: 24413019 [TBL] [Abstract][Full Text] [Related]
2. [Application of simultaneous auditory evoked potentials and functional magnetic resonance recordings for examination of central auditory system--preliminary results]. Milner R; Rusiniak M; Wolak T; Piatkowska-Janko E; Naumczyk P; Bogorodzki P; Senderski A; Ganc M; Skarzyński H Otolaryngol Pol; 2011; 65(3):171-83. PubMed ID: 21916216 [TBL] [Abstract][Full Text] [Related]
3. EEG signatures of auditory activity correlate with simultaneously recorded fMRI responses in humans. Mayhew SD; Dirckx SG; Niazy RK; Iannetti GD; Wise RG Neuroimage; 2010 Jan; 49(1):849-64. PubMed ID: 19591945 [TBL] [Abstract][Full Text] [Related]
4. The spatio-temporal dynamics of deviance and target detection in the passive and active auditory oddball paradigm: a sLORETA study. Justen C; Herbert C BMC Neurosci; 2018 Apr; 19(1):25. PubMed ID: 29673322 [TBL] [Abstract][Full Text] [Related]
5. The spatiotemporal pattern of pure tone processing: A single-trial EEG-fMRI study. Li Q; Liu G; Wei D; Guo J; Yuan G; Wu S Neuroimage; 2019 Feb; 187():184-191. PubMed ID: 29191479 [TBL] [Abstract][Full Text] [Related]
6. Cortical response variation with different sound pressure levels: a combined event-related potentials and FMRI study. Neuner I; Kawohl W; Arrubla J; Warbrick T; Hitz K; Wyss C; Boers F; Shah NJ PLoS One; 2014; 9(10):e109216. PubMed ID: 25279457 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous ERP and fMRI of the auditory cortex in a passive oddball paradigm. Liebenthal E; Ellingson ML; Spanaki MV; Prieto TE; Ropella KM; Binder JR Neuroimage; 2003 Aug; 19(4):1395-404. PubMed ID: 12948697 [TBL] [Abstract][Full Text] [Related]
8. Self vs. other: neural correlates underlying agent identification based on unimodal auditory information as revealed by electrotomography (sLORETA). Justen C; Herbert C; Werner K; Raab M Neuroscience; 2014 Feb; 259():25-34. PubMed ID: 24295635 [TBL] [Abstract][Full Text] [Related]
9. Differences in evoked potentials during the active processing of sound location and motion. Richter N; Schröger E; Rübsamen R Neuropsychologia; 2013 Jun; 51(7):1204-14. PubMed ID: 23499852 [TBL] [Abstract][Full Text] [Related]
11. Effect of attention on central auditory processing: an fMRI study. Sevostianov A; Fromm S; Nechaev V; Horwitz B; Braun A Int J Neurosci; 2002 May; 112(5):587-606. PubMed ID: 12325392 [TBL] [Abstract][Full Text] [Related]
12. N1 Magnitude of Auditory Evoked Potentials and Spontaneous Functional Connectivity Between Bilateral Heschl's Gyrus Are Coupled at Interindividual Level. Tan A; Hu L; Tu Y; Chen R; Hung YS; Zhang Z Brain Connect; 2016 Jul; 6(6):496-504. PubMed ID: 27105665 [TBL] [Abstract][Full Text] [Related]
13. Single-trial discrimination for integrating simultaneous EEG and fMRI: identifying cortical areas contributing to trial-to-trial variability in the auditory oddball task. Goldman RI; Wei CY; Philiastides MG; Gerson AD; Friedman D; Brown TR; Sajda P Neuroimage; 2009 Aug; 47(1):136-47. PubMed ID: 19345734 [TBL] [Abstract][Full Text] [Related]
14. Effects of acoustic gradient noise from functional magnetic resonance imaging on auditory processing as reflected by event-related brain potentials. Novitski N; Alho K; Korzyukov O; Carlson S; Martinkauppi S; Escera C; Rinne T; Aronen HJ; Näätänen R Neuroimage; 2001 Jul; 14(1 Pt 1):244-51. PubMed ID: 11525334 [TBL] [Abstract][Full Text] [Related]
15. Anatomic organization of evoked potentials in rat parietotemporal cortex: somatosensory and auditory responses. Barth DS; Kithas J; Di S J Neurophysiol; 1993 Jun; 69(6):1837-49. PubMed ID: 8394409 [TBL] [Abstract][Full Text] [Related]
16. Stimulus-dependent activations and attention-related modulations in the auditory cortex: a meta-analysis of fMRI studies. Alho K; Rinne T; Herron TJ; Woods DL Hear Res; 2014 Jan; 307():29-41. PubMed ID: 23938208 [TBL] [Abstract][Full Text] [Related]
17. Short-term sound temporal envelope characteristics determine multisecond time patterns of activity in human auditory cortex as shown by fMRI. Harms MP; Guinan JJ; Sigalovsky IS; Melcher JR J Neurophysiol; 2005 Jan; 93(1):210-22. PubMed ID: 15306629 [TBL] [Abstract][Full Text] [Related]
18. Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection. Mulert C; Jäger L; Schmitt R; Bussfeld P; Pogarell O; Möller HJ; Juckel G; Hegerl U Neuroimage; 2004 May; 22(1):83-94. PubMed ID: 15109999 [TBL] [Abstract][Full Text] [Related]
19. Cortical processing of pitch: Model-based encoding and decoding of auditory fMRI responses to real-life sounds. De Angelis V; De Martino F; Moerel M; Santoro R; Hausfeld L; Formisano E Neuroimage; 2018 Oct; 180(Pt A):291-300. PubMed ID: 29146377 [TBL] [Abstract][Full Text] [Related]
20. Sensitivity of EEG and MEG to the N1 and P2 auditory evoked responses modulated by spectral complexity of sounds. Shahin AJ; Roberts LE; Miller LM; McDonald KL; Alain C Brain Topogr; 2007; 20(2):55-61. PubMed ID: 17899352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]