These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 24413462)

  • 1. An optogenetic gene expression system with rapid activation and deactivation kinetics.
    Motta-Mena LB; Reade A; Mallory MJ; Glantz S; Weiner OD; Lynch KW; Gardner KH
    Nat Chem Biol; 2014 Mar; 10(3):196-202. PubMed ID: 24413462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-Induced GFP Expression in Zebrafish Embryos using the Optogenetic TAEL/C120 System.
    LaBelle J; Woo S
    J Vis Exp; 2021 Aug; (174):. PubMed ID: 34487118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TAEL: a zebrafish-optimized optogenetic gene expression system with fine spatial and temporal control.
    Reade A; Motta-Mena LB; Gardner KH; Stainier DY; Weiner OD; Woo S
    Development; 2017 Jan; 144(2):345-355. PubMed ID: 27993986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetic control of transcription in zebrafish.
    Liu H; Gomez G; Lin S; Lin S; Lin C
    PLoS One; 2012; 7(11):e50738. PubMed ID: 23226369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-Free Optogenetic Gene Expression System.
    Jayaraman P; Yeoh JW; Jayaraman S; Teh AY; Zhang J; Poh CL
    ACS Synth Biol; 2018 Apr; 7(4):986-994. PubMed ID: 29596741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TAEL 2.0: An Improved Optogenetic Expression System for Zebrafish.
    LaBelle J; Ramos-Martinez A; Shen K; Motta-Mena LB; Gardner KH; Materna SC; Woo S
    Zebrafish; 2021 Feb; 18(1):20-28. PubMed ID: 33555975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blue light-mediated transcriptional activation and repression of gene expression in bacteria.
    Jayaraman P; Devarajan K; Chua TK; Zhang H; Gunawan E; Poh CL
    Nucleic Acids Res; 2016 Aug; 44(14):6994-7005. PubMed ID: 27353329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted cell ablation in zebrafish using optogenetic transcriptional control.
    Mruk K; Ciepla P; Piza PA; Alnaqib MA; Chen JK
    Development; 2020 Jun; 147(12):. PubMed ID: 32414936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fungal Light-Oxygen-Voltage Domains for Optogenetic Control of Gene Expression and Flocculation in Yeast.
    Salinas F; Rojas V; Delgado V; López J; Agosin E; Larrondo LF
    mBio; 2018 Jul; 9(4):. PubMed ID: 30065085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of Optogenetic Dual-Switch System for Rewiring Metabolic Flux for Polyhydroxybutyrate Production.
    Wang S; Luo Y; Jiang W; Li X; Qi Q; Liang Q
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35163885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A small and highly sensitive red/far-red optogenetic switch for applications in mammals.
    Zhou Y; Kong D; Wang X; Yu G; Wu X; Guan N; Weber W; Ye H
    Nat Biotechnol; 2022 Feb; 40(2):262-272. PubMed ID: 34608325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implementation of a Novel Optogenetic Tool in Mammalian Cells Based on a Split T7 RNA Polymerase.
    Dionisi S; Piera K; Baumschlager A; Khammash M
    ACS Synth Biol; 2022 Aug; 11(8):2650-2661. PubMed ID: 35921263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal control of zebrafish (Danio rerio) gene expression using a light-activated CRISPR activation system.
    Putri RR; Chen L
    Gene; 2018 Nov; 677():273-279. PubMed ID: 30077009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-Dependent Control of Bacterial Expression at the mRNA Level.
    Ranzani AT; Wehrmann M; Kaiser J; Juraschitz M; Weber AM; Pietruschka G; Gerken U; Mayer G; Möglich A
    ACS Synth Biol; 2022 Oct; 11(10):3482-3492. PubMed ID: 36129831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible Optogenetic Control of Subcellular Protein Localization in a Live Vertebrate Embryo.
    Buckley CE; Moore RE; Reade A; Goldberg AR; Weiner OD; Clarke JDW
    Dev Cell; 2016 Jan; 36(1):117-126. PubMed ID: 26766447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-infrared light-controlled systems for gene transcription regulation, protein targeting and spectral multiplexing.
    Redchuk TA; Kaberniuk AA; Verkhusha VV
    Nat Protoc; 2018 May; 13(5):1121-1136. PubMed ID: 29700485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetic control of Bacillus subtilis gene expression.
    Castillo-Hair SM; Baerman EA; Fujita M; Igoshin OA; Tabor JJ
    Nat Commun; 2019 Jul; 10(1):3099. PubMed ID: 31308373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bringing Light into Cell-Free Expression.
    Zhang P; Yang J; Cho E; Lu Y
    ACS Synth Biol; 2020 Aug; 9(8):2144-2153. PubMed ID: 32603590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-Induced Dimerization Approaches to Control Cellular Processes.
    Klewer L; Wu YW
    Chemistry; 2019 Sep; 25(54):12452-12463. PubMed ID: 31304989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optogenetic Protein Cleavage in Zebrafish Embryos.
    Brown W; Albright S; Tsang M; Deiters A
    Chembiochem; 2022 Dec; 23(23):e202200297. PubMed ID: 36196665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.