These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 24413481)
1. Cellulose fermentation by Clostridium thermocellum and a mixed consortium in an automated repetitive batch reactor. Reed PT; Izquierdo JA; Lynd LR Bioresour Technol; 2014 Mar; 155():50-6. PubMed ID: 24413481 [TBL] [Abstract][Full Text] [Related]
2. Testing alternative kinetic models for utilization of crystalline cellulose (Avicel) by batch cultures of Clostridium thermocellum. Holwerda EK; Lynd LR Biotechnol Bioeng; 2013 Sep; 110(9):2389-94. PubMed ID: 23568291 [TBL] [Abstract][Full Text] [Related]
3. Continuous hydrogen production during fermentation of alpha-cellulose by the thermophillic bacterium Clostridium thermocellum. Magnusson L; Cicek N; Sparling R; Levin D Biotechnol Bioeng; 2009 Feb; 102(3):759-66. PubMed ID: 18828175 [TBL] [Abstract][Full Text] [Related]
4. Influence of initial cellulose concentration on the carbon flow distribution during batch fermentation by Clostridium thermocellum ATCC 27405. Islam R; Cicek N; Sparling R; Levin D Appl Microbiol Biotechnol; 2009 Feb; 82(1):141-8. PubMed ID: 18998122 [TBL] [Abstract][Full Text] [Related]
5. Expression of 17 genes in Clostridium thermocellum ATCC 27405 during fermentation of cellulose or cellobiose in continuous culture. Stevenson DM; Weimer PJ Appl Environ Microbiol; 2005 Aug; 71(8):4672-8. PubMed ID: 16085862 [TBL] [Abstract][Full Text] [Related]
6. CO2-fixing one-carbon metabolism in a cellulose-degrading bacterium Clostridium thermocellum. Xiong W; Lin PP; Magnusson L; Warner L; Liao JC; Maness PC; Chou KJ Proc Natl Acad Sci U S A; 2016 Nov; 113(46):13180-13185. PubMed ID: 27794122 [TBL] [Abstract][Full Text] [Related]
7. Conversion for Avicel and AFEX pretreated corn stover by Clostridium thermocellum and simultaneous saccharification and fermentation: insights into microbial conversion of pretreated cellulosic biomass. Shao X; Jin M; Guseva A; Liu C; Balan V; Hogsett D; Dale BE; Lynd L Bioresour Technol; 2011 Sep; 102(17):8040-5. PubMed ID: 21683579 [TBL] [Abstract][Full Text] [Related]
8. Development and evaluation of methods to infer biosynthesis and substrate consumption in cultures of cellulolytic microorganisms. Holwerda EK; Ellis LD; Lynd LR Biotechnol Bioeng; 2013 Sep; 110(9):2380-8. PubMed ID: 23568345 [TBL] [Abstract][Full Text] [Related]
9. A defined growth medium with very low background carbon for culturing Clostridium thermocellum. Holwerda EK; Hirst KD; Lynd LR J Ind Microbiol Biotechnol; 2012 Jun; 39(6):943-7. PubMed ID: 22350066 [TBL] [Abstract][Full Text] [Related]
10. Enhanced cellulosic ethanol production via consolidated bioprocessing by Clostridium thermocellum ATCC 31924☆. Singh N; Mathur AS; Gupta RP; Barrow CJ; Tuli D; Puri M Bioresour Technol; 2018 Feb; 250():860-867. PubMed ID: 30001594 [TBL] [Abstract][Full Text] [Related]
11. Nitrogen and sulfur requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on cellulosic substrates in minimal nutrient media. Kridelbaugh DM; Nelson J; Engle NL; Tschaplinski TJ; Graham DE Bioresour Technol; 2013 Feb; 130():125-35. PubMed ID: 23306120 [TBL] [Abstract][Full Text] [Related]
12. Effect of substrate loading on hydrogen production during anaerobic fermentation by Clostridium thermocellum 27405. Islam R; Cicek N; Sparling R; Levin D Appl Microbiol Biotechnol; 2006 Sep; 72(3):576-83. PubMed ID: 16685495 [TBL] [Abstract][Full Text] [Related]
13. Influence of moisture content and cultivation duration on Clostridium thermocellum 27405 end-product formation in solid substrate cultivation on Avicel. Chinn MS; Nokes SE; Strobel HJ Bioresour Technol; 2008 May; 99(7):2664-71. PubMed ID: 17629479 [TBL] [Abstract][Full Text] [Related]
14. Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum. Papanek B; Biswas R; Rydzak T; Guss AM Metab Eng; 2015 Nov; 32():49-54. PubMed ID: 26369438 [TBL] [Abstract][Full Text] [Related]
15. [Cellulose hydrolysis and ethanol production by a facultative anaerobe bacteria consortium H and its identification]. Du R; Li S; Zhang X; Wang L Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):960-5. PubMed ID: 20954397 [TBL] [Abstract][Full Text] [Related]
16. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
17. Optimization of influential nutrients during direct cellulose fermentation into hydrogen by Clostridium thermocellum. Islam R; Sparling R; Cicek N; Levin DB Int J Mol Sci; 2015 Jan; 16(2):3116-32. PubMed ID: 25647413 [TBL] [Abstract][Full Text] [Related]
18. Investigation of the metabolic inhibition observed in solid-substrate cultivation of Clostridium thermocellum on cellulose. Dharmagadda VS; Nokes SE; Strobel HJ; Flythe MD Bioresour Technol; 2010 Aug; 101(15):6039-44. PubMed ID: 20362436 [TBL] [Abstract][Full Text] [Related]
19. Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation. Niessen J; Schröder U; Harnisch F; Scholz F Lett Appl Microbiol; 2005; 41(3):286-90. PubMed ID: 16108922 [TBL] [Abstract][Full Text] [Related]
20. [Cellulose degradation and ethanol production of different Clostridium strain]. Fang ZG; Ouyang ZY Huan Jing Ke Xue; 2010 Aug; 31(8):1926-31. PubMed ID: 21090315 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]