These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 24413521)

  • 1. Identification of short terminal motifs enriched by antibodies using peptide mass fingerprinting.
    Planatscher H; Weiß F; Eisen D; van den Berg BH; Zell A; Joos T; Poetz O
    Bioinformatics; 2014 May; 30(9):1205-13. PubMed ID: 24413521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting peptide termini, a novel immunoaffinity approach to reduce complexity in mass spectrometric protein identification.
    Hoeppe S; Schreiber TD; Planatscher H; Zell A; Templin MF; Stoll D; Joos TO; Poetz O
    Mol Cell Proteomics; 2011 Feb; 10(2):M110.002857. PubMed ID: 20962300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal selection of epitopes for TXP-immunoaffinity mass spectrometry.
    Planatscher H; Supper J; Poetz O; Stoll D; Joos T; Templin MF; Zell A
    Algorithms Mol Biol; 2010 Jun; 5():28. PubMed ID: 20579369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peak bagging for peptide mass fingerprinting.
    He Z; Yang C; Yu W
    Bioinformatics; 2008 May; 24(10):1293-9. PubMed ID: 18397892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ProMEX: a mass spectral reference database for proteins and protein phosphorylation sites.
    Hummel J; Niemann M; Wienkoop S; Schulze W; Steinhauser D; Selbig J; Walther D; Weckwerth W
    BMC Bioinformatics; 2007 Jun; 8():216. PubMed ID: 17587460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches.
    Salih E
    Mass Spectrom Rev; 2005; 24(6):828-46. PubMed ID: 15538747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of uncertainty of peptide retention time predictions from a sequence-based model in LC-MS/MS proteomics experiments.
    Yanofsky CM; Kearney RE; Lesimple S; Bergeron JJ; Boismenu D; Carrillo B; Bell AW
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1221-4. PubMed ID: 18002183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using cross-correlation normalized for peptide length to optimize peptide identification in shotgun proteomics.
    Yang B; Ying W; Gong Y; Zhang Y; Cai Y; Dong H; Qian X
    Rapid Commun Mass Spectrom; 2005; 19(20):2983-5. PubMed ID: 16178048
    [No Abstract]   [Full Text] [Related]  

  • 9. Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations.
    Elias JE; Haas W; Faherty BK; Gygi SP
    Nat Methods; 2005 Sep; 2(9):667-75. PubMed ID: 16118637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A geometric approach for the alignment of liquid chromatography-mass spectrometry data.
    Lange E; Gröpl C; Schulz-Trieglaff O; Leinenbach A; Huber C; Reinert K
    Bioinformatics; 2007 Jul; 23(13):i273-81. PubMed ID: 17646306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ProteinInferencer: Confident protein identification and multiple experiment comparison for large scale proteomics projects.
    Zhang Y; Xu T; Shan B; Hart J; Aslanian A; Han X; Zong N; Li H; Choi H; Wang D; Acharya L; Du L; Vogt PK; Ping P; Yates JR
    J Proteomics; 2015 Nov; 129():25-32. PubMed ID: 26196237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust accurate identification of peptides (RAId): deciphering MS2 data using a structured library search with de novo based statistics.
    Alves G; Yu YK
    Bioinformatics; 2005 Oct; 21(19):3726-32. PubMed ID: 16105903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and analysis of quantitative differential proteomics investigations using LC-MS technology.
    Bukhman YV; Dharsee M; Ewing R; Chu P; Topaloglou T; Le Bihan T; Goh T; Duewel H; Stewart II; Wisniewski JR; Ng NF
    J Bioinform Comput Biol; 2008 Feb; 6(1):107-23. PubMed ID: 18324749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MSDash: mass spectrometry database and search.
    Wu Z; Lajoie G; Ma B
    Comput Syst Bioinformatics Conf; 2008; 7():63-71. PubMed ID: 19642269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Installation and use of the Computational Proteomics Analysis System (CPAS).
    Myers T; Law W; Eng JK; McIntosh M
    Curr Protoc Bioinformatics; 2007 Jun; Chapter 13():Unit 13.5. PubMed ID: 18428786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finding protein sequences using PROWL.
    Beavis R; Fenyö D
    Curr Protoc Bioinformatics; 2004 Oct; Chapter 13():Unit 13.2. PubMed ID: 18428719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Valid data from large-scale proteomics studies.
    Chamrad D; Meyer HE
    Nat Methods; 2005 Sep; 2(9):647-8. PubMed ID: 16118632
    [No Abstract]   [Full Text] [Related]  

  • 18. Mass analysis peptide sequence prediction (MAPSP).
    Eisenacher M; de Braaf J; König S
    Bioinformatics; 2006 Apr; 22(8):1002-3. PubMed ID: 16500935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. msmsEval: tandem mass spectral quality assignment for high-throughput proteomics.
    Wong JW; Sullivan MJ; Cartwright HM; Cagney G
    BMC Bioinformatics; 2007 Feb; 8():51. PubMed ID: 17291342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An iterative algorithm to quantify factors influencing peptide fragmentation during tandem mass spectrometry.
    Yu C; Lin Y; Sun S; Cai J; Zhang J; Bu D; Zhang Z; Chen R
    J Bioinform Comput Biol; 2007 Apr; 5(2a):297-311. PubMed ID: 17589963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.