These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 24413673)

  • 21. Molecular characterization and endosymbiotic localization of the gene encoding D-ribulose 1,5-bisphosphate carboxylase-oxygenase (RuBisCO) form II in the deep-sea vestimentiferan trophosome.
    Elsaied H; Kimura H; Naganuma T
    Microbiology (Reading); 2002 Jun; 148(Pt 6):1947-1957. PubMed ID: 12055314
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detecting the coevolution of biosequences--an example of RNA interaction prediction.
    Yeang CH; Darot JF; Noller HF; Haussler D
    Mol Biol Evol; 2007 Sep; 24(9):2119-31. PubMed ID: 17636042
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coevolving protein residues: maximum likelihood identification and relationship to structure.
    Pollock DD; Taylor WR; Goldman N
    J Mol Biol; 1999 Mar; 287(1):187-98. PubMed ID: 10074416
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phylogeny and evolution of the family Ectothiorhodospiraceae based on comparison of 16S rRNA, cbbL and nifH gene sequences.
    Tourova TP; Spiridonova EM; Berg IA; Slobodova NV; Boulygina ES; Sorokin DY
    Int J Syst Evol Microbiol; 2007 Oct; 57(Pt 10):2387-2398. PubMed ID: 17911316
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Freeing phylogenies from artifacts of alignment.
    Thorne JL; Kishino H
    Mol Biol Evol; 1992 Nov; 9(6):1148-62. PubMed ID: 1435239
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of Bayesian models of substitution rate evolution--parental guidance versus mutual independence.
    Linder M; Britton T; Sennblad B
    Syst Biol; 2011 May; 60(3):329-42. PubMed ID: 21386113
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of coevolution in nonstructural proteins of chikungunya virus.
    Jain J; Mathur K; Shrinet J; Bhatnagar RK; Sunil S
    Virol J; 2016 Jun; 13():86. PubMed ID: 27251040
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extracting phylogenetic dimensions of coevolution reveals hidden functional signals.
    Colavin A; Atolia E; Bitbol AF; Huang KC
    Sci Rep; 2022 Jan; 12(1):820. PubMed ID: 35039514
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aligning biological sequences by exploiting residue conservation and coevolution.
    Muntoni AP; Pagnani A; Weigt M; Zamponi F
    Phys Rev E; 2020 Dec; 102(6-1):062409. PubMed ID: 33465950
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How can third codon positions outperform first and second codon positions in phylogenetic inference? An empirical example from the seed plants.
    Simmons MP; Zhang LB; Webb CT; Reeves A
    Syst Biol; 2006 Apr; 55(2):245-58. PubMed ID: 16551581
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identifying coevolving partners from paralogous gene families.
    Yeang CH
    Evol Bioinform Online; 2008 Apr; 4():97-107. PubMed ID: 19204811
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction.
    Dunn SD; Wahl LM; Gloor GB
    Bioinformatics; 2008 Feb; 24(3):333-40. PubMed ID: 18057019
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 18S gene trees are positively misleading for monocot/dicot phylogenetics.
    Duvall MR; Bricker Ervin A
    Mol Phylogenet Evol; 2004 Jan; 30(1):97-106. PubMed ID: 15022761
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving genome annotations using phylogenetic profile anomaly detection.
    Mikkelsen TS; Galagan JE; Mesirov JP
    Bioinformatics; 2005 Feb; 21(4):464-70. PubMed ID: 15374867
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vestige: maximum likelihood phylogenetic footprinting.
    Wakefield MJ; Maxwell P; Huttley GA
    BMC Bioinformatics; 2005 May; 6():130. PubMed ID: 15921531
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In silico sequence evolution with site-specific interactions along phylogenetic trees.
    Gesell T; von Haeseler A
    Bioinformatics; 2006 Mar; 22(6):716-22. PubMed ID: 16332711
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of the evolution of ribulose-1, 5-biphosphate carboxylase (rbcL) and atpB-rbcL noncoding spacer sequences in a recent plant group, the tribe Rubieae (Rubiaceae).
    Manen JF; Natali A
    J Mol Evol; 1995 Dec; 41(6):920-7. PubMed ID: 8587137
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The cytonuclear dimension of allopolyploid evolution: an example from cotton using rubisco.
    Gong L; Salmon A; Yoo MJ; Grupp KK; Wang Z; Paterson AH; Wendel JF
    Mol Biol Evol; 2012 Oct; 29(10):3023-36. PubMed ID: 22490824
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sequence analysis and phylogenetic reconstruction of the genes encoding the large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase from the chlorophyll b-containing prokaryote Prochlorothrix hollandica.
    Morden CW; Golden SS
    J Mol Evol; 1991 May; 32(5):379-95. PubMed ID: 1904095
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The phylogenetic history of Selaginellaceae based on DNA sequences from the plastid and nucleus: extreme substitution rates and rate heterogeneity.
    Korall P; Kenrick P
    Mol Phylogenet Evol; 2004 Jun; 31(3):852-64. PubMed ID: 15120383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.