BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 24413677)

  • 1. Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow.
    Wong TT; Lau AK; Ho KK; Tang MY; Robles JD; Wei X; Chan AC; Tang AH; Lam EY; Wong KK; Chan GC; Shum HC; Tsia KK
    Sci Rep; 2014 Jan; 4():3656. PubMed ID: 24413677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic Imaging Flow Cytometry by Asymmetric-detection Time-stretch Optical Microscopy (ATOM).
    Tang AHL; Lai QTK; Chung BMF; Lee KCM; Mok ATY; Yip GK; Shum AHC; Wong KKY; Tsia KK
    J Vis Exp; 2017 Jun; (124):. PubMed ID: 28715367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast Microfluidic Cellular Imaging by Optical Time-Stretch.
    Lau AK; Wong TT; Shum HC; Wong KK; Tsia KK
    Methods Mol Biol; 2016; 1389():23-45. PubMed ID: 27460236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-throughput all-optical laser-scanning imaging flow cytometer with biomolecular specificity and subcellular resolution.
    Yan W; Wu J; Wong KKY; Tsia KK
    J Biophotonics; 2018 Feb; 11(2):. PubMed ID: 29072813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-ATOM: Ultrahigh-throughput single-cell quantitative phase imaging with subcellular resolution.
    Lee KCM; Lau AKS; Tang AHL; Wang M; Mok ATY; Chung BMF; Yan W; Shum HC; Cheah KSE; Chan GCF; So HKH; Wong KKY; Tsia KK
    J Biophotonics; 2019 Jul; 12(7):e201800479. PubMed ID: 30719868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput imaging flow cytometry by optofluidic time-stretch microscopy.
    Lei C; Kobayashi H; Wu Y; Li M; Isozaki A; Yasumoto A; Mikami H; Ito T; Nitta N; Sugimura T; Yamada M; Yatomi Y; Di Carlo D; Ozeki Y; Goda K
    Nat Protoc; 2018 Jul; 13(7):1603-1631. PubMed ID: 29976951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optofluidic time-stretch imaging - an emerging tool for high-throughput imaging flow cytometry.
    Lau AK; Shum HC; Wong KK; Tsia KK
    Lab Chip; 2016 May; 16(10):1743-56. PubMed ID: 27099993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interferometric time-stretch microscopy for ultrafast quantitative cellular and tissue imaging at 1 μm.
    Lau AK; Wong TT; Ho KK; Tang MT; Chan AC; Wei X; Lam EY; Shum HC; Wong KK; Tsia KK
    J Biomed Opt; 2014; 19(7):76001. PubMed ID: 24983913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-speed laser-scanning biological microscopy using FACED.
    Lai QTK; Yip GGK; Wu J; Wong JSJ; Lo MCK; Lee KCM; Le TTHD; So HKH; Ji N; Tsia KK
    Nat Protoc; 2021 Sep; 16(9):4227-4264. PubMed ID: 34341580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breathing laser as an inertia-free swept source for high-quality ultrafast optical bioimaging.
    Wei X; Xu J; Xu Y; Yu L; Xu J; Li B; Lau AK; Wang X; Zhang C; Tsia KK; Wong KK
    Opt Lett; 2014 Dec; 39(23):6593-6. PubMed ID: 25490629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadband fiber-optical parametric amplification for ultrafast time-stretch imaging at 1.0 μm.
    Wei X; Lau AK; Xu Y; Zhang C; Mussot A; Kudlinski A; Tsia KK; Wong KK
    Opt Lett; 2014 Oct; 39(20):5989-92. PubMed ID: 25361137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical data compression in time stretch imaging.
    Chen CL; Mahjoubfar A; Jalali B
    PLoS One; 2015; 10(4):e0125106. PubMed ID: 25906244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical time-stretch imaging flow cytometry in the compressed domain.
    Lin S; Li R; Weng Y; Mei L; Wei C; Song C; Wei S; Yao Y; Ruan X; Zhou F; Geng Q; Wang D; Lei C
    J Biophotonics; 2023 Aug; 16(8):e202300096. PubMed ID: 37170719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applicability of quantitative optical imaging techniques for intraoperative perfusion diagnostics: a comparison of laser speckle contrast imaging, sidestream dark-field microscopy, and optical coherence tomography.
    Jansen SM; de Bruin DM; Faber DJ; Dobbe IJGG; Heeg E; Milstein DMJ; Strackee SD; van Leeuwen TG
    J Biomed Opt; 2017 Aug; 22(8):1-9. PubMed ID: 28822141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Live imaging of nervous system development and function using light-sheet microscopy.
    Lemon WC; Keller PJ
    Mol Reprod Dev; 2015; 82(7-8):605-18. PubMed ID: 23996352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light sources and cameras for standard in vitro membrane potential and high-speed ion imaging.
    Davies R; Graham J; Canepari M
    J Microsc; 2013 Jul; 251(1):5-13. PubMed ID: 23692638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Flow-Induced Microfluidic Chip Wall Deformation on Imaging Flow Cytometry.
    Yalikun Y; Ota N; Guo B; Tang T; Zhou Y; Lei C; Kobayashi H; Hosokawa Y; Li M; Enrique Muñoz H; Di Carlo D; Goda K; Tanaka Y
    Cytometry A; 2020 Sep; 97(9):909-920. PubMed ID: 31856398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autofocus by Bayes Spectral Entropy Applied to Optical Microscopy.
    Podlech S
    Microsc Microanal; 2016 Feb; 22(1):199-207. PubMed ID: 26758956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-speed optical imaging with sCMOS pixel reassignment.
    Mandracchia B; Zheng C; Rajendran S; Liu W; Forghani P; Xu C; Jia S
    Nat Commun; 2024 May; 15(1):4598. PubMed ID: 38816394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscale imaging of cilia-driven fluid flow.
    Huang BK; Choma MA
    Cell Mol Life Sci; 2015 Mar; 72(6):1095-113. PubMed ID: 25417211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.