BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

696 related articles for article (PubMed ID: 24413700)

  • 1. Temporal structure of motor variability is dynamically regulated and predicts motor learning ability.
    Wu HG; Miyamoto YR; Gonzalez Castro LN; Ölveczky BP; Smith MA
    Nat Neurosci; 2014 Feb; 17(2):312-21. PubMed ID: 24413700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Domain-Specific Working Memory, But Not Dopamine-Related Genetic Variability, Shapes Reward-Based Motor Learning.
    Holland P; Codol O; Oxley E; Taylor M; Hamshere E; Joseph S; Huffer L; Galea JM
    J Neurosci; 2019 Nov; 39(47):9383-9396. PubMed ID: 31604835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Task-relevant and task-irrelevant variability causally shape error-based motor learning.
    Dal'Bello LR; Izawa J
    Neural Netw; 2021 Oct; 142():583-596. PubMed ID: 34352492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motor variability is not noise, but grist for the learning mill.
    Herzfeld DJ; Shadmehr R
    Nat Neurosci; 2014 Feb; 17(2):149-50. PubMed ID: 24473260
    [No Abstract]   [Full Text] [Related]  

  • 5. Reinforcement-based processes actively regulate motor exploration along redundant solution manifolds.
    Roth AM; Calalo JA; Lokesh R; Sullivan SR; Grill S; Jeka JJ; van der Kooij K; Carter MJ; Cashaback JGA
    Proc Biol Sci; 2023 Oct; 290(2009):20231475. PubMed ID: 37848061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can the structure of motor variability predict learning rate?
    Barbado Murillo D; Caballero Sánchez C; Moreside J; Vera-García FJ; Moreno FJ
    J Exp Psychol Hum Percept Perform; 2017 Mar; 43(3):596-607. PubMed ID: 28095006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trial-to-trial variability of single cells in motor cortices is dynamically modified during visuomotor adaptation.
    Mandelblat-Cerf Y; Paz R; Vaadia E
    J Neurosci; 2009 Dec; 29(48):15053-62. PubMed ID: 19955356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reward-based learning of a redundant task.
    Tamagnone I; Casadio M; Sanguineti V
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650386. PubMed ID: 24187205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning a stick-balancing task involves task-specific coupling between posture and hand displacements.
    Cluff T; Boulet J; Balasubramaniam R
    Exp Brain Res; 2011 Aug; 213(1):15-25. PubMed ID: 21706299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Individual differences in implicit motor learning: task specificity in sensorimotor adaptation and sequence learning.
    Stark-Inbar A; Raza M; Taylor JA; Ivry RB
    J Neurophysiol; 2017 Jan; 117(1):412-428. PubMed ID: 27832611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The decay of motor adaptation to novel movement dynamics reveals an asymmetry in the stability of motion state-dependent learning.
    Hosseini EA; Nguyen KP; Joiner WM
    PLoS Comput Biol; 2017 May; 13(5):e1005492. PubMed ID: 28481891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reward-Based Improvements in Motor Control Are Driven by Multiple Error-Reducing Mechanisms.
    Codol O; Holland PJ; Manohar SG; Galea JM
    J Neurosci; 2020 Apr; 40(18):3604-3620. PubMed ID: 32234779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Role of Variability in Motor Learning.
    Dhawale AK; Smith MA; Ölveczky BP
    Annu Rev Neurosci; 2017 Jul; 40():479-498. PubMed ID: 28489490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clustering analysis of movement kinematics in reinforcement learning.
    Sidarta A; Komar J; Ostry DJ
    J Neurophysiol; 2022 Feb; 127(2):341-353. PubMed ID: 34936514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Movement vigor as a traitlike attribute of individuality.
    Reppert TR; Rigas I; Herzfeld DJ; Sedaghat-Nejad E; Komogortsev O; Shadmehr R
    J Neurophysiol; 2018 Aug; 120(2):741-757. PubMed ID: 29766769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Two sides of the same coin": constant motor learning speeds up, whereas variable motor learning stabilizes, speed-accuracy movements.
    Skurvydas A; Satas A; Valanciene D; Mamkus G; Mickeviciene D; Majauskiene D; Brazaitis M
    Eur J Appl Physiol; 2020 May; 120(5):1027-1039. PubMed ID: 32172292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human Variation in Error-Based and Reinforcement Motor Learning Is Associated With Entorhinal Volume.
    de Brouwer AJ; Areshenkoff CN; Rashid MR; Flanagan JR; Poppenk J; Gallivan JP
    Cereb Cortex; 2022 Aug; 32(16):3423-3440. PubMed ID: 34963128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying exploration in reward-based motor learning.
    van Mastrigt NM; Smeets JBJ; van der Kooij K
    PLoS One; 2020; 15(4):e0226789. PubMed ID: 32240174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Persistence of reduced neuromotor noise in long-term motor skill learning.
    Huber ME; Kuznetsov N; Sternad D
    J Neurophysiol; 2016 Dec; 116(6):2922-2935. PubMed ID: 27683883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of [corrected] nigrostriatal dopamine system in learning to perform sequential motor tasks in a predictive manner.
    Matsumoto N; Hanakawa T; Maki S; Graybiel AM; Kimura M
    J Neurophysiol; 1999 Aug; 82(2):978-98. PubMed ID: 10444692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.