These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 24414110)

  • 41. Chlorophyll biosynthesis from glutamate or 5-aminolevulinate in intact Euglena chloroplasts.
    Gomez-Silva B; Timko MP; Schiff JA
    Planta; 1985 Jul; 165(1):12-22. PubMed ID: 24240952
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Light-regulated translation of chloroplast proteins. I. Transcripts of psaA-psaB, psbA, and rbcL are associated with polysomes in dark-grown and illuminated barley seedlings.
    Klein RR; Mason HS; Mullet JE
    J Cell Biol; 1988 Feb; 106(2):289-301. PubMed ID: 3339092
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Organization of Chlorophyll a in the Light-Harvesting Chlorophyll a/b Protein Complex as Shown by Circular Dichroism : Liquid Crystal-Like Domains.
    Faludi-Dániel A; Mustárdy LA
    Plant Physiol; 1983 Sep; 73(1):16-9. PubMed ID: 16663167
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantitative studies on ferredoxin in greening bean leaves.
    Haslett BG; Cammack R; Whatley FR
    Biochem J; 1973 Nov; 136(3):697-703. PubMed ID: 4360717
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effect of light intensity and sucrose feeding on the fine structure in chloroplasts and on the chlorophyll content of etiolated leaves.
    EILAM Y; KLEIN S
    J Cell Biol; 1962 Aug; 14(2):169-82. PubMed ID: 13889621
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A structure-function analysis of chlorophyllase reveals a mechanism for activity regulation dependent on disulfide bonds.
    Jo M; Knapp M; Boggs DG; Brimberry M; Donnan PH; Bridwell-Rabb J
    J Biol Chem; 2023 Mar; 299(3):102958. PubMed ID: 36731794
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chlorophyll regulates accumulation of the plastid-encoded chlorophyll apoproteins CP43 and D1 by increasing apoprotein stability.
    Mullet JE; Klein PG; Klein RR
    Proc Natl Acad Sci U S A; 1990 Jun; 87(11):4038-42. PubMed ID: 2349216
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Greening of intermittent-light-grown bean plants in continuous light: thylakoid components in relation to photosynthetic performance and capacity for photoprotection.
    Chow WS; Funk C; Hope AB; Govindjee
    Indian J Biochem Biophys; 2000 Dec; 37(6):395-404. PubMed ID: 11355626
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Light-stimulation of alanine aminotransferase activity in dark-grown leaves of Lolium temulentum L. as related to chlorophyll formation.
    Hedley CL; Stoddart JL
    Planta; 1971 Dec; 100(4):309-24. PubMed ID: 24488243
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chlorophyll breakdown by chlorophyllase: isolation and functional expression of the Chlase1 gene from ethylene-treated Citrus fruit and its regulation during development.
    Jacob-Wilk D; Holland D; Goldschmidt EE; Riov J; Eyal Y
    Plant J; 1999 Dec; 20(6):653-61. PubMed ID: 10652137
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of lecithin liposomes on chlorophyllase-catalyzed chlorophyll hydrolysis: comparison of intramembraneous and solubilized Phaeodactylum chlorophyllase.
    Terpstra W
    Biochim Biophys Acta; 1980 Jul; 600(1):36-47. PubMed ID: 7397173
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Gibberellic acid and chlorophyll content of leaves of phaseolus vulgaris L].
    Szalai I
    Planta; 1968 Jun; 83(2):161-5. PubMed ID: 24519139
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transformation of plastids in soil-shaded lowermost hypocotyl segments of bean (Phaseolus vulgaris) during a 60-day cultivation period.
    Kakuszi A; Solymosi K; Böddi B
    Physiol Plant; 2017 Apr; 159(4):483-491. PubMed ID: 27734513
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation of chloroplast-encoded chlorophyll-binding protein translation during higher plant chloroplast biogenesis.
    Klein RR; Mullet JE
    J Biol Chem; 1986 Aug; 261(24):11138-45. PubMed ID: 3525563
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A possible ribosomal-directed regulatory system in Euglena gracilis. Chlorophyll synthesis.
    Perl M
    Biochem J; 1972 Dec; 130(3):813-8. PubMed ID: 4198358
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Light piping driven photosynthesis in the soil: Low-light adapted active photosynthetic apparatus in the under-soil hypocotyl segments of bean (Phaseolus vulgaris).
    Kakuszi A; Sárvári É; Solti Á; Czégény G; Hideg É; Hunyadi-Gulyás É; Bóka K; Böddi B
    J Photochem Photobiol B; 2016 Aug; 161():422-9. PubMed ID: 27318297
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biosynthetic events required for lag elimination in chlorophyll synthesis in Euglena.
    Schwartzbach SD; Schiff JA; Klein S
    Planta; 1976 Jan; 131(1):1-9. PubMed ID: 24424687
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Independent effects of leaf growth and light on the development of the plastid and its DNA content in Zea species.
    Zheng Q; Oldenburg DJ; Bendich AJ
    J Exp Bot; 2011 May; 62(8):2715-30. PubMed ID: 21266496
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Involvement of chlorophyllase in chlorophyll metabolism in olive varieties with high and low chlorophyll content.
    Roca M; Mínguez-Mosquera MI
    Physiol Plant; 2003 Apr; 117(4):459-466. PubMed ID: 12675736
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of a high-throughput purification method and a continuous assay system for chlorophyllase.
    Arkus KA; Jez JM
    Anal Biochem; 2006 Jun; 353(1):93-8. PubMed ID: 16643837
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.