These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24414262)

  • 1. Membrene turnover in imbibed and dormant embryos of the wild oat (Avena fatua L.) : I. Protein turnover and membrane replacement.
    Cuming AC; Osborne DJ
    Planta; 1978 Jan; 139(3):209-17. PubMed ID: 24414262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane turnover in imbibed dormant embryos of the wild oat (Avena fatua L.) : II. Phospholipid turnover and membrane replacement.
    Cuming AC; Osborne DJ
    Planta; 1978 Jan; 139(3):219-26. PubMed ID: 24414263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Germination induction of dormant Avena fatua caryopses by KAR(1) and GA(3) involving the control of reactive oxygen species (H2O2 and O2(·-)) and enzymatic antioxidants (superoxide dismutase and catalase) both in the embryo and the aleurone layers.
    Cembrowska-Lech D; Koprowski M; Kępczyński J
    J Plant Physiol; 2015 Mar; 176():169-79. PubMed ID: 25618514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and characterization of differentially expressed genes in imbibed dormant and afterripened Avena fatua embryos.
    Li B; Foley ME
    Plant Mol Biol; 1995 Nov; 29(4):823-31. PubMed ID: 8541507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gibberellin-like effects of KAR1 on dormancy release of Avena fatua caryopses include participation of non-enzymatic antioxidants and cell cycle activation in embryos.
    Cembrowska-Lech D; Kępczyński J
    Planta; 2016 Feb; 243(2):531-48. PubMed ID: 26526413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in germination and respiratory potential of embryos of dormant Grand Rapids lettuce seeds during long-term imbibed storage, and related changes in the endosperm.
    Powell AD; Dulson J; Bewley JD
    Planta; 1984 Sep; 162(1):40-5. PubMed ID: 24253946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Respiration and Protein Synthesis in Dormant and After-ripened Seeds of Avena fatua.
    Chen SS; Varner JE
    Plant Physiol; 1970 Jul; 46(1):108-12. PubMed ID: 16657399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and analysis of proteins that interact with the Avena fatua homologue of the maize transcription factor VIVIPAROUS 1.
    Jones HD; Kurup S; Peters NC; Holdsworth MJ
    Plant J; 2000 Jan; 21(2):133-42. PubMed ID: 10743654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of cDNA clones for differentially expressed genes in embryos of dormant and nondormant Avena fatua L. caryopses.
    Johnson RR; Cranston HJ; Chaverra ME; Dyer WE
    Plant Mol Biol; 1995 Apr; 28(1):113-22. PubMed ID: 7787176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defense Enzyme Responses in Dormant Wild Oat and Wheat Caryopses Challenged with a Seed Decay Pathogen.
    Fuerst EP; James MS; Pollard AT; Okubara PA
    Front Plant Sci; 2017; 8():2259. PubMed ID: 29410673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana.
    Ali-Rachedi S; Bouinot D; Wagner MH; Bonnet M; Sotta B; Grappin P; Jullien M
    Planta; 2004 Jul; 219(3):479-88. PubMed ID: 15060827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteome-Wide Response of Dormant Caryopses of the Weed,
    Lewis RW; Okubara PA; Sullivan TS; Madden BJ; Johnson KL; Charlesworth MC; Fuerst EP
    Phytopathology; 2022 May; 112(5):1103-1117. PubMed ID: 35365054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional and Posttranscriptional Regulation of Dormancy-Associated Gene Expression by Afterripening in Wild Oat.
    Li B; Foley ME
    Plant Physiol; 1996 Apr; 110(4):1267-1273. PubMed ID: 12226258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies in Wild Oat Seed Dormancy: I. THE ROLE OF ETHYLENE IN DORMANCY BREAKAGE AND GERMINATION OF WILD OAT SEEDS (AVENA FATUA L.).
    Adkins SW; Ross JD
    Plant Physiol; 1981 Feb; 67(2):358-62. PubMed ID: 16661675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular cloning and expression of abscisic Acid-responsive genes in embryos of dormant wheat seeds.
    Morris CF; Anderberg RJ; Goldmark PJ; Walker-Simmons MK
    Plant Physiol; 1991 Mar; 95(3):814-21. PubMed ID: 16668059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fructose 2,6-bisphosphate in germinating oat seeds. A biochemical study of seed dormancy.
    Larondelle Y; Corbineau F; Dethier M; Come D; Hers HG
    Eur J Biochem; 1987 Aug; 166(3):605-10. PubMed ID: 2956097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An autoradiographic study of the effect of the plant hormone abscisic acid on nucleic acid and protein metabolism.
    Villiers TA
    Planta; 1968 Dec; 82(4):342-54. PubMed ID: 24518996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence of active NADP(+) phosphatase in dormant seeds of Avena sativa L.
    Gallais S; de Crescenzo MA; Laval-Martin DL
    J Exp Bot; 2000 Aug; 51(349):1389-94. PubMed ID: 10944152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genotype and environment interact to control dormancy and differential expression of the VIVIPAROUS 1 homologue in embryos of Avena fatua.
    Jones HD; Peters NC; Holdsworth MJ
    Plant J; 1997 Oct; 12(4):911-20. PubMed ID: 9375401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Endogenous Growth Regulators in Seed Dormancy of Avena fatua: I. Short Chain Fatty Acids.
    Metzger JD; Sebesta DK
    Plant Physiol; 1982 Nov; 70(5):1480-5. PubMed ID: 16662702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.