BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 24414358)

  • 1. Incorporation of (14)CO 2 in photosynthetic pigments of Chlorella pyrenoidosa.
    Grumbach KH; Lichtenthaler HK; Erismann KH
    Planta; 1978 Jan; 140(1):37-43. PubMed ID: 24414358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Studies on the light-induced reversible xanthophyll-conversions in Chlorella and spinach leaves].
    Hager A
    Planta; 1967 Jun; 74(2):148-72. PubMed ID: 24549888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of (14)CO 2 in prenylquinones of Chlorella pyrenoidosa.
    Grumbach KH; Lichtenthaler HK
    Planta; 1978 Jan; 141(3):253-8. PubMed ID: 24414869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo manipulation of the xanthophyll cycle and the role of zeaxanthin in the protection against photodamage in the green alga Chlorella pyrenoidosa.
    Schubert H; Kroon BM; Matthijs HC
    J Biol Chem; 1994 Mar; 269(10):7267-72. PubMed ID: 8125939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carotenoid binding sites in LHCIIb. Relative affinities towards major xanthophylls of higher plants.
    Hobe S; Niemeier H; Bender A; Paulsen H
    Eur J Biochem; 2000 Jan; 267(2):616-24. PubMed ID: 10632733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photosynthesis, chlorophyll fluorescence, light-harvesting system and photoinhibition resistance of a zeaxanthin-accumulating mutant of Arabidopsis thaliana.
    Tardy F; Havaux M
    J Photochem Photobiol B; 1996 Jun; 34(1):87-94. PubMed ID: 8765663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A micellar model system for the role of zeaxanthin in the non-photochemical quenching process of photosynthesis--chlorophyll fluorescence quenching by the xanthophylls.
    Avital S; Brumfeld V; Malkin S
    Biochim Biophys Acta; 2006 Jul; 1757(7):798-810. PubMed ID: 16870132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Extraction and quantitative determination of carotenoids and chlorophylls of leaves, algae and isolated chloroplasts with the aid of thin-layer chromatography].
    Hager A; Meyer-Bertenrath T
    Planta; 1966 Sep; 69(3):198-217. PubMed ID: 24557863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Simultaneous determination of carotenoids and chlorophylls in algae by high performance liquid chromatography].
    Yuan J; Zhang Y; Shi X; Gong X; Chen F
    Se Pu; 1997 Mar; 15(2):133-5. PubMed ID: 15739401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The determination and quantification of photosynthetic pigments by reverse phase high-performance liquid chromatography, thin-layer chromatography, and spectrophotometry.
    Pocock T; Król M; Huner NP
    Methods Mol Biol; 2004; 274():137-48. PubMed ID: 15187276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthetic routes of hydroxylated carotenoids (xanthophylls) in Marchantia polymorpha, and production of novel and rare xanthophylls through pathway engineering in Escherichia coli.
    Takemura M; Maoka T; Misawa N
    Planta; 2015 Mar; 241(3):699-710. PubMed ID: 25467956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlorophyll and carotenoid patterns in olive fruits, Olea europaea Cv. arbequina.
    Gandul-Rojas B; Cepero MR; Mínguez-Mosquera MI
    J Agric Food Chem; 1999 Jun; 47(6):2207-12. PubMed ID: 10794611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photosynthetic pigment composition and photosystem II photochemistry of wheat ears.
    Lu Q; Lu C
    Plant Physiol Biochem; 2004 May; 42(5):395-402. PubMed ID: 15191742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved high performance liquid chromatographic method for determination of carotenoids in the microalga Chlorella pyrenoidosa.
    Inbaraj BS; Chien JT; Chen BH
    J Chromatogr A; 2006 Jan; 1102(1-2):193-9. PubMed ID: 16298378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the stoichiometry and strength of binding of xanthophylls to the photosystem II light harvesting complexes.
    Ruban AV; Lee PJ; Wentworth M; Young AJ; Horton P
    J Biol Chem; 1999 Apr; 274(15):10458-65. PubMed ID: 10187836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carotenoid profiling of the leaves of selected African eggplant accessions subjected to drought stress.
    Mibei EK; Ambuko J; Giovannoni JJ; Onyango AN; Owino WO
    Food Sci Nutr; 2017 Jan; 5(1):113-122. PubMed ID: 28070322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Violaxanthin: natural function and occurrence, biosynthesis, and heterologous production.
    Takemura M; Sahara T; Misawa N
    Appl Microbiol Biotechnol; 2021 Aug; 105(16-17):6133-6142. PubMed ID: 34338805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New transgenic line of Arabidopsis thaliana with partly disabled zeaxanthin epoxidase activity displays changed carotenoid composition, xanthophyll cycle activity and non-photochemical quenching kinetics.
    Nowicka B; Strzalka W; Strzalka K
    J Plant Physiol; 2009 Jul; 166(10):1045-56. PubMed ID: 19278749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mathematical model describing kinetics of conversion of violaxanthin to zeaxanthin via intermediate antheraxanthin by the xanthophyll cycle enzyme violaxanthin de-epoxidase.
    Latowski D; Burda K; Strzałka K
    J Theor Biol; 2000 Oct; 206(4):507-14. PubMed ID: 11013111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Daily intake of carotenoids (carotenes and xanthophylls) from total diet and the carotenoid content of selected vegetables and fuit].
    Müller H
    Z Ernahrungswiss; 1996 Mar; 35(1):45-50. PubMed ID: 8815648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.