These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24414808)

  • 1. The potential of current- and wind-driven transport for environmental management of the Baltic Sea.
    Soomere T; Döös K; Lehmann A; Meier HE; Murawski J; Myrberg K; Stanev E
    Ambio; 2014 Feb; 43(1):94-104. PubMed ID: 24414808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of Lagrangian trajectories for the identification of the environmentally safe fairways.
    Soomere T; Andrejev O; Myrberg K; Sokolov A
    Mar Pollut Bull; 2011 Jul; 62(7):1410-20. PubMed ID: 21620423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A probabilistic approach for a cost-benefit analysis of oil spill management under uncertainty: A Bayesian network model for the Gulf of Finland.
    Helle I; Ahtiainen H; Luoma E; Hänninen M; Kuikka S
    J Environ Manage; 2015 Aug; 158():122-32. PubMed ID: 25983196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal scales for nearshore hits of current-driven pollution in the Gulf of Finland.
    Viikmäe B; Soomere T
    Mar Pollut Bull; 2016 May; 106(1-2):77-86. PubMed ID: 27004999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A decision framework for possible remediation of contaminated sediments in the River Kymijoki, Finland.
    Verta M; Kiviranta H; Salo S; Malve O; Korhonen M; Verkasalo PK; Ruokojärvi P; Rossi E; Hanski A; Päätalo K; Vartiainen T
    Environ Sci Pollut Res Int; 2009 Jan; 16(1):95-105. PubMed ID: 18941816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the Marine Protected Areas most at risk of current-driven pollution in the Gulf of Finland, the Baltic Sea, using a Lagrangian transport model.
    Delpeche-Ellmann NC; Soomere T
    Mar Pollut Bull; 2013 Feb; 67(1-2):121-9. PubMed ID: 23219396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmentally safe areas and routes in the Baltic proper using Eulerian tracers.
    Höglund A; Meier HE
    Mar Pollut Bull; 2012 Jul; 64(7):1375-85. PubMed ID: 22658577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maritime Spatial Planning supported by systematic site selection: Applying Marxan for offshore wind power in the western Baltic Sea.
    Göke C; Dahl K; Mohn C
    PLoS One; 2018; 13(3):e0194362. PubMed ID: 29543878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using ERS-2 SAR images for routine observation of marine pollution in European coastal waters.
    Gade M; Alpers W
    Sci Total Environ; 1999 Sep; 237-238():441-8. PubMed ID: 10568294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on temporary resolution for offshore marine oil spill emergencies based on remote sensing system.
    Lan GX; Dong KX; Lin JJ
    J Environ Biol; 2016 Sep; 37(5 Spec No):1177-1180. PubMed ID: 29989750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of large pollution patches via collisions of sticky floating parcels driven by wind and surface currents.
    Giudici A; Kalda J; Soomere T
    Mar Pollut Bull; 2019 Apr; 141():573-585. PubMed ID: 30955770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy metal concentrations in sediment cores from the northern Baltic Sea: declines over the last two decades.
    Vallius H
    Mar Pollut Bull; 2014 Feb; 79(1-2):359-64. PubMed ID: 24365454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bayesian Network risk model for assessing oil spill recovery effectiveness in the ice-covered Northern Baltic Sea.
    Lu L; Goerlandt F; Valdez Banda OA; Kujala P; Höglund A; Arneborg L
    Mar Pollut Bull; 2019 Feb; 139():440-458. PubMed ID: 30686447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term environmental risks of the Baltic Sea's "memory effect" revealed by ocean modeling and observation of reprocessing-derived radiotracers.
    Lin M; She J; Murawski J; Hou X; Qiao J
    J Hazard Mater; 2023 Feb; 443(Pt A):130144. PubMed ID: 36242956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the effectiveness of oil combating from an ecological perspective--a Bayesian network for the Gulf of Finland; the Baltic Sea.
    Helle I; Lecklin T; Jolma A; Kuikka S
    J Hazard Mater; 2011 Jan; 185(1):182-92. PubMed ID: 20934249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling spatial dispersion of contaminants from shipping lanes in the Baltic Sea.
    Maljutenko I; Hassellöv IM; Eriksson M; Ytreberg E; Yngsell D; Johansson L; Jalkanen JP; Kõuts M; Kasemets ML; Moldanova J; Magnusson K; Raudsepp U
    Mar Pollut Bull; 2021 Dec; 173(Pt A):112985. PubMed ID: 34598094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tackling hypoxia in the Baltic Sea: is engineering a solution?
    Conley DJ; Bonsdorff E; Carstensen J; Destouni G; Gustafsson BG; Hansson LA; Rabalais NN; Voss M; Zillén L
    Environ Sci Technol; 2009 May; 43(10):3407-11. PubMed ID: 19544832
    [No Abstract]   [Full Text] [Related]  

  • 18. Accidental versus operational oil spills from shipping in the Baltic Sea: risk governance and management strategies.
    Hassler B
    Ambio; 2011 Mar; 40(2):170-8. PubMed ID: 21446395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Riverine tot-P loading and seawater concentrations in the Baltic Sea during the 1970s to 2000-transfer function modelling based on the total runoff.
    Hänninen J; Vuorinen I
    Environ Monit Assess; 2015 Jun; 187(6):343. PubMed ID: 25963762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The costs of meeting the environmental objectives for the Baltic Sea: a review of the literature.
    Elofsson K
    Ambio; 2010 Feb; 39(1):49-58. PubMed ID: 20496652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.