BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 24415255)

  • 1. A linker strategy for trans-FRET assay to determine activation intermediate of NEDDylation cascade.
    Malik-Chaudhry HK; Saavedra A; Liao J
    Biotechnol Bioeng; 2014 Jul; 111(7):1288-95. PubMed ID: 24415255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific substrate recognition and thioester intermediate determinations in ubiquitin and SUMO conjugation cascades revealed by a high-sensitive FRET assay.
    Jiang L; Saavedra AN; Way G; Alanis J; Kung R; Li J; Xiang W; Liao J
    Mol Biosyst; 2014 Apr; 10(4):778-86. PubMed ID: 24452848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of FRET assay into quantitative and high-throughput screening technology platforms for protein-protein interactions.
    Song Y; Madahar V; Liao J
    Ann Biomed Eng; 2011 Apr; 39(4):1224-34. PubMed ID: 21174150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein interaction affinity determination by quantitative FRET technology.
    Song Y; Rodgers VG; Schultz JS; Liao J
    Biotechnol Bioeng; 2012 Nov; 109(11):2875-83. PubMed ID: 22711490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of SUMO1 and ATP affinity for the SUMO E1by quantitative FRET technology.
    Wiryawan H; Dan K; Etuale M; Shen Y; Liao J
    Biotechnol Bioeng; 2015 Apr; 112(4):652-8. PubMed ID: 25333792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary optimization of fluorescent proteins for intracellular FRET.
    Nguyen AW; Daugherty PS
    Nat Biotechnol; 2005 Mar; 23(3):355-60. PubMed ID: 15696158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Internal calibration Förster resonance energy transfer assay: a real-time approach for determining protease kinetics.
    Jiang L; Liu Y; Song Y; Saavedra AN; Pan S; Xiang W; Liao J
    Sensors (Basel); 2013 Apr; 13(4):4553-70. PubMed ID: 23567524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic determinations of SUMOylation activation intermediates and dynamics by a sensitive and quantitative FRET assay.
    Song Y; Liao J
    Mol Biosyst; 2012 Jun; 8(6):1723-9. PubMed ID: 22466055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Förster resonance energy transfer analysis for kinetic determinations of SUMO-specific protease.
    Liu Y; Song Y; Madahar V; Liao J
    Anal Biochem; 2012 Mar; 422(1):14-21. PubMed ID: 22244808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative FRET (Förster Resonance Energy Transfer) analysis for SENP1 protease kinetics determination.
    Liu Y; Liao J
    J Vis Exp; 2013 Feb; (72):e4430. PubMed ID: 23463095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative FRET analysis with the EGFP-mCherry fluorescent protein pair.
    Albertazzi L; Arosio D; Marchetti L; Ricci F; Beltram F
    Photochem Photobiol; 2009; 85(1):287-97. PubMed ID: 18764891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering FRET constructs using CFP and YFP.
    Shimozono S; Miyawaki A
    Methods Cell Biol; 2008; 85():381-93. PubMed ID: 18155471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel robust quantitative Förster resonance energy transfer assay for protease SENP2 kinetics determination against its all natural substrates.
    Liu Y; Shen Y; Zheng S; Liao J
    Mol Biosyst; 2015 Dec; 11(12):3407-14. PubMed ID: 26486594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a cell-based fluorescence resonance energy transfer reporter for Bacillus anthracis lethal factor protease.
    Kimura RH; Steenblock ER; Camarero JA
    Anal Biochem; 2007 Oct; 369(1):60-70. PubMed ID: 17586456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An in vitro Förster resonance energy transfer-based high-throughput screening assay for inhibitors of protein-protein interactions in SUMOylation pathway.
    Song Y; Liao J
    Assay Drug Dev Technol; 2012 Aug; 10(4):336-43. PubMed ID: 22192309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new FRET-based platform to track substrate ubiquitination by fluorescence.
    Wu K; Ching K; Chong RA; Pan ZQ
    J Biol Chem; 2021; 296():100230. PubMed ID: 33361156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new trend to determine biochemical parameters by quantitative FRET assays.
    Liao JY; Song Y; Liu Y
    Acta Pharmacol Sin; 2015 Dec; 36(12):1408-15. PubMed ID: 26567729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE
    Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a high-dynamic range, GFP-based FRET probe sensitive to oxidative microenvironments.
    Kolossov VL; Spring BQ; Clegg RM; Henry JJ; Sokolowski A; Kenis PJ; Gaskins HR
    Exp Biol Med (Maywood); 2011 Jun; 236(6):681-91. PubMed ID: 21606117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of in vitro SUMOylation using bioluminescence resonance energy transfer (BRET).
    Kim YP; Jin Z; Kim E; Park S; Oh YH; Kim HS
    Biochem Biophys Res Commun; 2009 May; 382(3):530-4. PubMed ID: 19289109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.