BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 24415255)

  • 21. Development of a ubiquitin transfer assay for high throughput screening by fluorescence resonance energy transfer.
    Boisclair MD; McClure C; Josiah S; Glass S; Bottomley S; Kamerkar S; Hemmilä I
    J Biomol Screen; 2000 Oct; 5(5):319-28. PubMed ID: 11080690
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo dynamics of enterovirus protease revealed by fluorescence resonance emission transfer (FRET) based on a novel FRET pair.
    Hsu YY; Liu YN; Wang W; Kao FJ; Kung SH
    Biochem Biophys Res Commun; 2007 Feb; 353(4):939-45. PubMed ID: 17207462
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A General
    Zuo Y; Chong BK; Jiang K; Finley D; Klenerman D; Ye Y
    Biochemistry; 2020 Feb; 59(7):851-861. PubMed ID: 31951392
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB
    J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An experimental study of GFP-based FRET, with application to intrinsically unstructured proteins.
    Ohashi T; Galiacy SD; Briscoe G; Erickson HP
    Protein Sci; 2007 Jul; 16(7):1429-38. PubMed ID: 17586775
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measuring caspase activity by Förster resonance energy transfer.
    Rehm M; Parsons MJ; Bouchier-Hayes L
    Cold Spring Harb Protoc; 2015 Jan; 2015(1):pdb.prot082560. PubMed ID: 25561624
    [TBL] [Abstract][Full Text] [Related]  

  • 28. FRET-based evaluation of Bid cleavage in a single primary cultured neuron.
    Nakazawa H; Nishimura A; Suga K; Mishima T; Yorozu T; Iijima T
    Neurosci Lett; 2013 Mar; 536():24-8. PubMed ID: 23262091
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of steady-state Förster resonance energy transfer data by avoiding pitfalls: interaction of JAK2 tyrosine kinase with N-methylanthraniloyl nucleotides.
    Niranjan Y; Ungureanu D; Hammarén H; Sanz-Sanz A; Westphal AH; Borst JW; Silvennoinen O; Hilhorst R
    Anal Biochem; 2013 Nov; 442(2):213-22. PubMed ID: 23891636
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An in vitro FRET-based assay for the analysis of SUMO conjugation and isopeptidase cleavage.
    Stankovic-Valentin N; Kozaczkiewicz L; Curth K; Melchior F
    Methods Mol Biol; 2009; 497():241-51. PubMed ID: 19107422
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimizing fluorescent protein trios for 3-Way FRET imaging of protein interactions in living cells.
    Scott BL; Hoppe AD
    Sci Rep; 2015 Jul; 5():10270. PubMed ID: 26130463
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detection of the interaction between SNAP25 and rabphilin in neuroendocrine PC12 cells using the FLIM/FRET technique.
    Lee JD; Chang YF; Kao FJ; Kao LS; Lin CC; Lu AC; Shyu BC; Chiou SH; Yang DM
    Microsc Res Tech; 2008 Jan; 71(1):26-34. PubMed ID: 17886343
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isopeptidase Kinetics Determination by a Real Time and Sensitive qFRET Approach.
    Liu Y; Shen Y; Song Y; Xu L; P Perry JJ; Liao J
    Biomolecules; 2021 Apr; 11(5):. PubMed ID: 33946350
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High throughput FRET analysis of protein-protein interactions by slide-based imaging laser scanning cytometry.
    Szalóki N; Doan-Xuan QM; Szöllősi J; Tóth K; Vámosi G; Bacsó Z
    Cytometry A; 2013 Sep; 83(9):818-29. PubMed ID: 23843167
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dissecting Distinct Roles of NEDDylation E1 Ligase Heterodimer APPBP1 and UBA3 Reveals Potential Evolution Process for Activation of Ubiquitin-related Pathways.
    Malik-Chaudhry HK; Gaieb Z; Saavedra A; Reyes M; Kung R; Le F; Morikis D; Liao J
    Sci Rep; 2018 Jul; 8(1):10108. PubMed ID: 29973603
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new pair for inter- and intra-molecular FRET measurement.
    Yang X; Xu P; Xu T
    Biochem Biophys Res Commun; 2005 May; 330(3):914-20. PubMed ID: 15809083
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Midori-ishi Cyan/monomeric Kusabira-Orange-based fluorescence resonance energy transfer assay for characterization of various E3 ligases.
    Otsubo R; Kim M; Lee J; Sasakawa C
    Genes Cells; 2016 Jun; 21(6):608-23. PubMed ID: 27091465
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein-Protein Affinity Determination by Quantitative FRET Quenching.
    Jiang L; Xiong Z; Song Y; Lu Y; Chen Y; Schultz JS; Li J; Liao J
    Sci Rep; 2019 Feb; 9(1):2050. PubMed ID: 30765720
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a high throughput time-resolved fluorescence resonance energy transfer assay for TRAF6 ubiquitin polymerization.
    Hong CA; Swearingen E; Mallari R; Gao X; Cao Z; North A; Young SW; Huang SG
    Assay Drug Dev Technol; 2003 Feb; 1(1 Pt 2):175-80. PubMed ID: 15090144
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection of protease activity by fluorescent protein FRET sensors: from computer simulation to live cells.
    Goryashchenko AS; Khrenova MG; Savitsky AP
    Methods Appl Fluoresc; 2018 Jan; 6(2):022001. PubMed ID: 29185993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.