These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 24415316)

  • 1. Biofilm formation in water cooling systems.
    Lutterbach MT; de França FP
    World J Microbiol Biotechnol; 1996 Jul; 12(4):391-4. PubMed ID: 24415316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variation in sessile microflora during biofilm formation on AISI-304 stainless steel coupons.
    de França FP; Lutterbach MT
    J Ind Microbiol; 1996 Jul; 17(1):6-10. PubMed ID: 8987686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pioneer colonizer microorganisms in biofilm formation on galvanized steel in a simulated recirculating cooling-water system.
    Doğruöz N; Göksay D; Ilhan-Sungur E; Cotuk A
    J Basic Microbiol; 2009 Sep; 49 Suppl 1():S5-12. PubMed ID: 19455520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The corrosion behaviour of galvanized steel in cooling tower water containing a biocide and a corrosion inhibitor.
    Minnoş B; Ilhan-Sungur E; Çotuk A; Güngör ND; Cansever N
    Biofouling; 2013; 29(3):223-35. PubMed ID: 23439037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of W-TiO2 composite to control microbiologically influenced corrosion on galvanized steel.
    Basheer R; Ganga G; Chandran RK; Nair GM; Nair MB; Shibli SM
    Appl Microbiol Biotechnol; 2013 Jun; 97(12):5615-25. PubMed ID: 22983597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occurrence of manganese-oxidizing microorganisms and manganese deposition during biofilm formation on stainless steel in a brackish surface water.
    Kielemoes J; Bultinck I; Storms H; Boon N; Verstraete W
    FEMS Microbiol Ecol; 2002 Jan; 39(1):41-55. PubMed ID: 19709183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple imaging techniques demonstrate the manipulation of surfaces to reduce bacterial contamination and corrosion.
    Arnold JW; Boothe DH; Suzuki O; Bailey GW
    J Microsc; 2004 Dec; 216(Pt 3):215-21. PubMed ID: 15566492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial corrosion of stainless steel.
    Ibars JR; Moreno DA; Ranninger C
    Microbiologia; 1992 Nov; 8(2):63-75. PubMed ID: 1492953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro surface corrosion of stainless steel and NiTi orthodontic appliances.
    Shin JS; Oh KT; Hwang CJ
    Aust Orthod J; 2003 Apr; 19(1):13-8. PubMed ID: 12790351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study.
    Yuan SJ; Pehkonen SO
    Colloids Surf B Biointerfaces; 2007 Sep; 59(1):87-99. PubMed ID: 17582747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Dynamics of successive changes in sulphidogenic microbial association under the conditions of formation of the biofilm on steel surface].
    Purish LM; Asaulenko LH
    Mikrobiol Z; 2007; 69(6):19-25. PubMed ID: 18380176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Microorganisms in heat supply lines and internal corrosion of steel pipes].
    Rozanova EP; Dubinina GA; Lebedeva EV; Suntsova LA; Lipovskikh VM; Tsvetkov NN
    Mikrobiologiia; 2003; 72(2):212-20. PubMed ID: 12751246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight into the mechanism of carbon steel corrosion under aerobic and anaerobic conditions.
    El Mendili Y; Abdelouas A; Bardeau JF
    Phys Chem Chem Phys; 2013 Jun; 15(23):9197-204. PubMed ID: 23652337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An overview of mechanisms by which sulphate-reducing bacteria influence corrosion of steel in marine environments.
    Videla HA
    Biofouling; 2000; 15(1-3):37-47. PubMed ID: 22115290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of corrosion inhibitor on adhesion of sulfate-reducing bacteria to steel and their production of exopolymer complex].
    Purishch LM; Asaulenko LH; Koptieva ZhP; Kozlova IP
    Mikrobiol Z; 2004; 66(4):78-85. PubMed ID: 15515905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern?
    Serhan H; Slivka M; Albert T; Kwak SD
    Spine J; 2004; 4(4):379-87. PubMed ID: 15246296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibiting mild steel corrosion from sulfate-reducing and iron-oxidizing bacteria using gramicidin-S-producing biofilms.
    Zuo R; Wood TK
    Appl Microbiol Biotechnol; 2004 Nov; 65(6):747-53. PubMed ID: 15278311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ detection of bacteria involved in cathodic depolarization and stainless steel surface corrosion using microautoradiography.
    Kjellerup BV; Olesen BH; Nielsen JL; Sowers KR; Nielsen PH
    J Appl Microbiol; 2008 Dec; 105(6):2231-8. PubMed ID: 19016973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cathodic behaviour of stainless steel in coastal Indian seawater: calcareous deposits overwhelm biofilms.
    Eashwar M; Subramanian G; Palanichamy S; Rajagopal G; Madhu S; Kamaraj P
    Biofouling; 2009; 25(3):191-201. PubMed ID: 19169951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation and decontamination of biofilms in dental unit waterlines.
    Wirthlin MR; Marshall GW; Rowland RW
    J Periodontol; 2003 Nov; 74(11):1595-609. PubMed ID: 14682656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.