These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 24415482)

  • 1. GISH: resolving interspecific and intergeneric hybrids.
    Piperidis N
    Methods Mol Biol; 2014; 1115():325-36. PubMed ID: 24415482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GISH: Resolving Interspecific and Intergeneric Hybrids.
    Piperidis N
    Methods Mol Biol; 2021; 2222():381-394. PubMed ID: 33301103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GISH characterization of Erianthus arundinaceus chromosomes in three generations of sugarcane intergeneric hybrids.
    Piperidis N; Chen JW; Deng HH; Wang LP; Jackson P; Piperidis G
    Genome; 2010 May; 53(5):331-6. PubMed ID: 20616864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paternity determination of interspecific rhododendron hybrids by genomic in situ hybridization (GISH).
    Czernicka M; Mścichowska A; Klein M; Muras P; Grzebelus E
    Genome; 2010 Apr; 53(4):277-84. PubMed ID: 20616859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Establishment of a multi-color genomic in situ hybridization technique to simultaneously discriminate the three interspecific hybrid genomes in gossypium.
    Guan B; Wang K; Zhou BL; Guo WZ; Zhang TZ
    J Integr Plant Biol; 2008 Mar; 50(3):345-51. PubMed ID: 18713367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment of the genomic in situ hybridization (GISH) technique for analysis in interspecific hybrids of Passiflora.
    Melo CA; Silva GS; Souza MM
    Genet Mol Res; 2015 Mar; 14(1):2176-88. PubMed ID: 25867365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana.
    D'Hont A
    Cytogenet Genome Res; 2005; 109(1-3):27-33. PubMed ID: 15753555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromosome transmission in BC
    Yang S; Zeng K; Chen K; Wu J; Wang Q; Li X; Deng Z; Huang Y; Huang F; Chen R; Zhang M
    Sci Rep; 2019 Feb; 9(1):2528. PubMed ID: 30792411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogenetic analysis of Saccharum s.l. (Poaceae; Andropogoneae), with emphasis on the circumscription of the South American species.
    Welker CA; Souza-Chies TT; Longhi-Wagner HM; Peichoto MC; McKain MR; Kellogg EA
    Am J Bot; 2015 Feb; 102(2):248-63. PubMed ID: 25667078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Genomic Inheritance of Intergeneric Hybrids between Ascocenda and Phalaenopsis Cultivars by GISH, PCR-RFLP and RFLP.
    Liu WL; Shih HC; Weng IS; Ko YZ; Tsai CC; Chou CH; Chiang YC
    PLoS One; 2016; 11(4):e0153512. PubMed ID: 27055268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytogenetic comparisons between A and G genomes in Oryza using genomic in situ hybridization.
    Xiong ZY; Tan GX; He GY; He GC; Song YC
    Cell Res; 2006 Mar; 16(3):260-6. PubMed ID: 16541124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytogenetic and agronomic characterization of intergeneric hybrids between Saccharum spp. hybrid and Erianthus arundinaceus.
    Pachakkil B; Terajima Y; Ohmido N; Ebina M; Irei S; Hayashi H; Takagi H
    Sci Rep; 2019 Feb; 9(1):1748. PubMed ID: 30742000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular contribution to selection of intergeneric hybrids between sugarcane and the wild species Erianthus arundinaceus.
    Piperidis G; Christopher MJ; Carroll BJ; Berding N; D'Hont A
    Genome; 2000 Dec; 43(6):1033-7. PubMed ID: 11195335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using sequential fluorescence and genomic in situ hybridization (FISH and GISH) to distinguish the A and C genomes in Brassica napus.
    Howell EC; Armstrong S
    Methods Mol Biol; 2013; 990():25-34. PubMed ID: 23559199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic in situ hybridization in plants with small genomes is feasible and elucidates the chromosomal parentage in interspecific Arabidopsis hybrids.
    Ali HB; Lysak MA; Schubert I
    Genome; 2004 Oct; 47(5):954-60. PubMed ID: 15499409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An assessment of chromosomal rearrangements in neopolyploids of Lilium hybrids.
    Xie S; Khan N; Ramanna MS; Niu L; Marasek-Ciolakowska A; Arens P; van Tuyl JM
    Genome; 2010 Jun; 53(6):439-46. PubMed ID: 20555433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formamide-Free Genomic in situ Hybridization Allows Unambiguous Discrimination of Highly Similar Parental Genomes in Diploid Hybrids and Allopolyploids.
    Jang TS; Weiss-Schneeweiss H
    Cytogenet Genome Res; 2015; 146(4):325-31. PubMed ID: 26492445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sugarcane genome architecture decrypted with chromosome-specific oligo probes.
    Piperidis N; D'Hont A
    Plant J; 2020 Sep; 103(6):2039-2051. PubMed ID: 32537783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The genome organization and diversification of maize and its allied species revisited: evidences from classical and FISH-GISH cytogenetic analysis.
    Poggio L; Gonzalez G; Confalonieri V; Comas C; Naranjo CA
    Cytogenet Genome Res; 2005; 109(1-3):259-67. PubMed ID: 15753585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of genome constitutions in Begonia×chungii and its putative parents, B. longifolia and B. palmata, by genomic in situ hybridization (GISH).
    Kono Y; Chung MC; Peng CI
    Plant Sci; 2012 Apr; 185-186():156-60. PubMed ID: 22325876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.