These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 24416152)

  • 1. Commuter mobility and the spread of infectious diseases: application to influenza in France.
    Charaudeau S; Pakdaman K; Boëlle PY
    PLoS One; 2014; 9(1):e83002. PubMed ID: 24416152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the use of human mobility proxies for modeling epidemics.
    Tizzoni M; Bajardi P; Decuyper A; Kon Kam King G; Schneider CM; Blondel V; Smoreda Z; González MC; Colizza V
    PLoS Comput Biol; 2014 Jul; 10(7):e1003716. PubMed ID: 25010676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of mobility network properties on predicted epidemic dynamics in Dhaka and Bangkok.
    Brown TS; Engø-Monsen K; Kiang MV; Mahmud AS; Maude RJ; Buckee CO
    Epidemics; 2021 Jun; 35():100441. PubMed ID: 33667878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metapopulation model using commuting flow for national spread of the 2009 H1N1 influenza virus in the Republic of Korea.
    Lee J; Choi BY; Jung E
    J Theor Biol; 2018 Oct; 454():320-329. PubMed ID: 29940195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human mobility patterns predict divergent epidemic dynamics among cities.
    Dalziel BD; Pourbohloul B; Ellner SP
    Proc Biol Sci; 2013 Sep; 280(1766):20130763. PubMed ID: 23864593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FRED (a Framework for Reconstructing Epidemic Dynamics): an open-source software system for modeling infectious diseases and control strategies using census-based populations.
    Grefenstette JJ; Brown ST; Rosenfeld R; DePasse J; Stone NT; Cooley PC; Wheaton WD; Fyshe A; Galloway DD; Sriram A; Guclu H; Abraham T; Burke DS
    BMC Public Health; 2013 Oct; 13():940. PubMed ID: 24103508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EpiRank: Modeling Bidirectional Disease Spread in Asymmetric Commuting Networks.
    Huang CY; Chin WC; Wen TH; Fu YH; Tsai YS
    Sci Rep; 2019 Apr; 9(1):5415. PubMed ID: 30931968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstructing a spatially heterogeneous epidemic: Characterising the geographic spread of 2009 A/H1N1pdm infection in England.
    Birrell PJ; Zhang XS; Pebody RG; Gay NJ; De Angelis D
    Sci Rep; 2016 Jul; 6():29004. PubMed ID: 27404957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shifting patterns of seasonal influenza epidemics.
    Coletti P; Poletto C; Turbelin C; Blanchon T; Colizza V
    Sci Rep; 2018 Aug; 8(1):12786. PubMed ID: 30143689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving incidence estimation in practice-based sentinel surveillance networks using spatial variation in general practitioner density.
    Souty C; Boëlle PY
    BMC Med Res Methodol; 2016 Nov; 16(1):156. PubMed ID: 27846798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of routine versus random movements on the spread of disease in Great Britain.
    Danon L; House T; Keeling MJ
    Epidemics; 2009 Dec; 1(4):250-8. PubMed ID: 21352771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sampling for global epidemic models and the topology of an international airport network.
    Bobashev G; Morris RJ; Goedecke DM
    PLoS One; 2008 Sep; 3(9):e3154. PubMed ID: 18776932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparedness for the spread of influenza: prohibition of traffic, school closure, and vaccination of children in the commuter towns of Tokyo.
    Yasuda H; Yoshizawa N; Kimura M; Shigematsu M; Matsumoto M; Kawachi S; Oshima M; Yamamoto K; Suzuki K
    J Urban Health; 2008 Jul; 85(4):619-35. PubMed ID: 18449643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating contact patterns relevant to the spread of infectious diseases in Russia.
    Ajelli M; Litvinova M
    J Theor Biol; 2017 Apr; 419():1-7. PubMed ID: 28161415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An agent-based approach for modeling dynamics of contagious disease spread.
    Perez L; Dragicevic S
    Int J Health Geogr; 2009 Aug; 8():50. PubMed ID: 19656403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high-resolution human contact network for infectious disease transmission.
    Salathé M; Kazandjieva M; Lee JW; Levis P; Feldman MW; Jones JH
    Proc Natl Acad Sci U S A; 2010 Dec; 107(51):22020-5. PubMed ID: 21149721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surveillance of influenza-like illness in France. The example of the 1995/1996 epidemic.
    Carrat F; Flahault A; Boussard E; Farran N; Dangoumau L; Valleron AJ
    J Epidemiol Community Health; 1998 Apr; 52 Suppl 1():32S-38S. PubMed ID: 9764269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel geo-hierarchical population mobility model for spatial spreading of resurgent epidemics.
    Topîrceanu A; Precup RE
    Sci Rep; 2021 Jul; 11(1):14341. PubMed ID: 34253835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Role of Human Transportation Networks in Mediating the Genetic Structure of Seasonal Influenza in the United States.
    Bozick BA; Real LA
    PLoS Pathog; 2015 Jun; 11(6):e1004898. PubMed ID: 26086273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Edge-based epidemic spreading in degree-correlated complex networks.
    Wang Y; Ma J; Cao J; Li L
    J Theor Biol; 2018 Oct; 454():164-181. PubMed ID: 29885412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.