These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24416341)

  • 1. Multimodal movement prediction - towards an individual assistance of patients.
    Kirchner EA; Tabie M; Seeland A
    PLoS One; 2014; 9(1):e85060. PubMed ID: 24416341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological and kinematic effects of a soft exosuit on arm movements.
    Xiloyannis M; Chiaradia D; Frisoli A; Masia L
    J Neuroeng Rehabil; 2019 Feb; 16(1):29. PubMed ID: 30791919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Hybrid FPGA-Based System for EEG- and EMG-Based Online Movement Prediction.
    Wöhrle H; Tabie M; Kim SK; Kirchner F; Kirchner EA
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28671632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the effects of the Arm Light Exoskeleton on movement execution and muscle activities: a pilot study on healthy subjects.
    Pirondini E; Coscia M; Marcheschi S; Roas G; Salsedo F; Frisoli A; Bergamasco M; Micera S
    J Neuroeng Rehabil; 2016 Jan; 13():9. PubMed ID: 26801620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting the Intention to Move Upper Limbs from Electroencephalographic Brain Signals.
    Gudiño-Mendoza B; Sanchez-Ante G; Antelis JM
    Comput Math Methods Med; 2016; 2016():3195373. PubMed ID: 27217826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of movement onset using EMG signals for upper-limb exoskeletons in reaching tasks.
    Trigili E; Grazi L; Crea S; Accogli A; Carpaneto J; Micera S; Vitiello N; Panarese A
    J Neuroeng Rehabil; 2019 Mar; 16(1):45. PubMed ID: 30922326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of reaching intention using EEG signals and nonlinear dynamic system identification.
    Mirzaee MS; Moghimi S
    Comput Methods Programs Biomed; 2019 Jul; 175():151-161. PubMed ID: 31104704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of resting, anticipation and movement states in self-initiated arm movements for EEG brain computer interfaces.
    Rodrigo M; Montesano L; Minguez J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6285-8. PubMed ID: 22255775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous Description of Human 3D Motion Intent Through Switching Mechanism.
    Huang Y; Song R; Argha A; Savkin AV; Celler BG; Su SW
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):277-286. PubMed ID: 31647440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-density surface EMG maps from upper-arm and forearm muscles.
    Rojas-Martínez M; Mañanas MA; Alonso JF
    J Neuroeng Rehabil; 2012 Dec; 9():85. PubMed ID: 23216679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of self-paced reaching movement intention from EEG signals.
    Lew E; Chavarriaga R; Silvoni S; Millán Jdel R
    Front Neuroeng; 2012; 5():13. PubMed ID: 23055968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating EMG signals to drive neuromusculoskeletal models in cyclic rehabilitation movements.
    Tagliapietra L; Vivian M; Sartori M; Farina D; Reggiani M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3611-4. PubMed ID: 26737074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review in gait rehabilitation devices and applied control techniques.
    Chaparro-Cárdenas SL; Lozano-Guzmán AA; Ramirez-Bautista JA; Hernández-Zavala A
    Disabil Rehabil Assist Technol; 2018 Nov; 13(8):819-834. PubMed ID: 29577779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EEG Analysis During Active and Assisted Repetitive Movements: Evidence for Differences in Neural Engagement.
    Tacchino G; Gandolla M; Coelli S; Barbieri R; Pedrocchi A; Bianchi AM
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):761-771. PubMed ID: 27529874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Avoidance of specific calibration sessions in motor intention recognition for exoskeleton-supported rehabilitation through transfer learning on EEG data.
    Kueper N; Kim SK; Kirchner EA
    Sci Rep; 2024 Jul; 14(1):16690. PubMed ID: 39030206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EMG-based pattern recognition approach in post stroke robot-aided rehabilitation: a feasibility study.
    Cesqui B; Tropea P; Micera S; Krebs HI
    J Neuroeng Rehabil; 2013 Jul; 10():75. PubMed ID: 23855907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upper-limb muscular electrical stimulation driven by EEG-based detections of the intentions to move: a proposed intervention for patients with stroke.
    Ibanez J; Serrano JI; del Castillo MD; Monge E; Molina F; Rivas FM; Alguacil I; Miangolarra JC; Pons JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1646-9. PubMed ID: 25570289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of arm weight support on upper limb muscle synergies during reaching movements.
    Coscia M; Cheung VC; Tropea P; Koenig A; Monaco V; Bennis C; Micera S; Bonato P
    J Neuroeng Rehabil; 2014 Mar; 11():22. PubMed ID: 24594139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arm Orthosis/Prosthesis Movement Control Based on Surface EMG Signal Extraction.
    Suberbiola A; Zulueta E; Lopez-Guede JM; Etxeberria-Agiriano I; Graña M
    Int J Neural Syst; 2015 May; 25(3):1550009. PubMed ID: 25851029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proportional EMG control for upper-limb powered exoskeletons.
    Lenzi T; De Rossi SM; Vitiello N; Carrozza MC
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():628-31. PubMed ID: 22254387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.