These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 24417379)

  • 1. Combining atomistic simulation and X-ray diffraction for the characterization of nanostructures: a case study on fivefold twinned nanowires.
    Niekiel F; Bitzek E; Spiecker E
    ACS Nano; 2014 Feb; 8(2):1629-38. PubMed ID: 24417379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-destructive detection of cross-sectional strain and defect structure in an individual Ag five-fold twinned nanowire by 3D electron diffraction mapping.
    Fu X; Yuan J
    Sci Rep; 2017 Jul; 7(1):6206. PubMed ID: 28740257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fivefold twinned boron carbide nanowires.
    Fu X; Jiang J; Liu C; Yuan J
    Nanotechnology; 2009 Sep; 20(36):365707. PubMed ID: 19687534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size-dependent elastic moduli and vibrational properties of fivefold twinned copper nanowires.
    Zheng YG; Zhao YT; Ye HF; Zhang HW
    Nanotechnology; 2014 Aug; 25(31):315701. PubMed ID: 25030768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrate ion promoted formation of Ag nanowires in polyol processes: a new nanowire growth mechanism.
    Kuo CL; Hwang KC
    Langmuir; 2012 Feb; 28(8):3722-9. PubMed ID: 22304018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strain Hardening and Size Effect in Five-fold Twinned Ag Nanowires.
    Narayanan S; Cheng G; Zeng Z; Zhu Y; Zhu T
    Nano Lett; 2015 Jun; 15(6):4037-44. PubMed ID: 25965858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic structural analysis of nanowire defects and polytypes enabled through cross-sectional lattice imaging.
    Hemesath ER; Schreiber DK; Kisielowski CF; Petford-Long AK; Lauhon LJ
    Small; 2012 Jun; 8(11):1717-24. PubMed ID: 22447661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic products in coordination networks: ab initio X-ray powder diffraction analysis.
    Martí-Rujas J; Kawano M
    Acc Chem Res; 2013 Feb; 46(2):493-505. PubMed ID: 23252592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the metal-directed growth of single-crystal M-TCNQF4 organic nanowires with time-resolved, in situ X-ray diffraction and first-principles theoretical studies.
    Xiao K; Yoon M; Rondinone AJ; Payzant EA; Geohegan DB
    J Am Chem Soc; 2012 Sep; 134(35):14353-61. PubMed ID: 22506925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic twinned silver nanoparticles with molecular precision.
    Yang H; Wang Y; Chen X; Zhao X; Gu L; Huang H; Yan J; Xu C; Li G; Wu J; Edwards AJ; Dittrich B; Tang Z; Wang D; Lehtovaara L; Häkkinen H; Zheng N
    Nat Commun; 2016 Sep; 7():12809. PubMed ID: 27611564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray diffraction strain analysis of a single axial InAs 1-x Px nanowire segment.
    Keplinger M; Mandl B; Kriegner D; Holý V; Samuelsson L; Bauer G; Deppert K; Stangl J
    J Synchrotron Radiat; 2015 Jan; 22(1):59-66. PubMed ID: 25537589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-seeded growth of five-fold twinned copper nanowires: mechanistic study, characterization, and SERS applications.
    Yang HJ; He SY; Tuan HY
    Langmuir; 2014 Jan; 30(2):602-10. PubMed ID: 24367924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strain state of GaN nanodisks in AlN nanowires studied by medium energy ion spectroscopy.
    Jalabert D; Curé Y; Hestroffer K; Niquet YM; Daudin B
    Nanotechnology; 2012 Oct; 23(42):425703. PubMed ID: 23037990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ferromagnetic CoPt3 nanowires: structural evolution from fcc to ordered L1(2).
    Chen HM; Hsin CF; Chen PY; Liu RS; Hu SF; Huang CY; Lee JF; Jang LY
    J Am Chem Soc; 2009 Nov; 131(43):15794-801. PubMed ID: 19807087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth Mechanism of Five-Fold Twinned Ag Nanowires from Multiscale Theory and Simulations.
    Qi X; Chen Z; Yan T; Fichthorn KA
    ACS Nano; 2019 Apr; 13(4):4647-4656. PubMed ID: 30869861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noble metal nanowires: from plasmon waveguides to passive and active devices.
    Lal S; Hafner JH; Halas NJ; Link S; Nordlander P
    Acc Chem Res; 2012 Nov; 45(11):1887-95. PubMed ID: 23102053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-pot, high-yield synthesis of 5-fold twinned Pd nanowires and nanorods.
    Huang X; Zheng N
    J Am Chem Soc; 2009 Apr; 131(13):4602-3. PubMed ID: 19292441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unconventional zigzag indium phosphide single-crystalline and twinned nanowires.
    Shen G; Bando Y; Liu B; Tang C; Golberg D
    J Phys Chem B; 2006 Oct; 110(41):20129-32. PubMed ID: 17034187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Periodically twinned SiC nanowires.
    Wang DH; Xu D; Wang Q; Hao YJ; Jin GQ; Guo XY; Tu KN
    Nanotechnology; 2008 May; 19(21):215602. PubMed ID: 21730575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ambient stable tetragonal and orthorhombic phases in penta-twinned bipyramidal au microcrystals.
    Mettela G; Bhogra M; Waghmare UV; Kulkarni GU
    J Am Chem Soc; 2015 Mar; 137(8):3024-30. PubMed ID: 25671293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.