BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 24417606)

  • 1. Defective graphene as a high-capacity anode material for Na- and Ca-ion batteries.
    Datta D; Li J; Shenoy VB
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1788-95. PubMed ID: 24417606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boron doped defective graphene as a potential anode material for Li-ion batteries.
    Hardikar RP; Das D; Han SS; Lee KR; Singh AK
    Phys Chem Chem Phys; 2014 Aug; 16(31):16502-8. PubMed ID: 24986702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can all nitrogen-doped defects improve the performance of graphene anode materials for lithium-ion batteries?
    Yu YX
    Phys Chem Chem Phys; 2013 Oct; 15(39):16819-27. PubMed ID: 24002442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SnS2 nanoplatelet@graphene nanocomposites as high-capacity anode materials for sodium-ion batteries.
    Xie X; Su D; Chen S; Zhang J; Dou S; Wang G
    Chem Asian J; 2014 Jun; 9(6):1611-7. PubMed ID: 24729583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First-principles analysis of defect-mediated Li adsorption on graphene.
    Yildirim H; Kinaci A; Zhao ZJ; Chan MK; Greeley JP
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21141-50. PubMed ID: 25394787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ti₃C₂ MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries.
    Er D; Li J; Naguib M; Gogotsi Y; Shenoy VB
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11173-9. PubMed ID: 24979179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible conversion-alloying of Sb2O3 as a high-capacity, high-rate, and durable anode for sodium ion batteries.
    Hu M; Jiang Y; Sun W; Wang H; Jin C; Yan M
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19449-55. PubMed ID: 25329758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries.
    Wu ZS; Ren W; Xu L; Li F; Cheng HM
    ACS Nano; 2011 Jul; 5(7):5463-71. PubMed ID: 21696205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ultrastable anode for long-life room-temperature sodium-ion batteries.
    Yu H; Ren Y; Xiao D; Guo S; Zhu Y; Qian Y; Gu L; Zhou H
    Angew Chem Int Ed Engl; 2014 Aug; 53(34):8963-9. PubMed ID: 24962822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption and Formation of Small Na Clusters on Pristine and Double-Vacancy Graphene for Anodes of Na-Ion Batteries.
    Liang Z; Fan X; Zheng W; Singh DJ
    ACS Appl Mater Interfaces; 2017 May; 9(20):17076-17084. PubMed ID: 28474877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium/Lithium storage behavior of antimony hollow nanospheres for rechargeable batteries.
    Hou H; Jing M; Yang Y; Zhu Y; Fang L; Song W; Pan C; Yang X; Ji X
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16189-96. PubMed ID: 25140456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of nitrogen-doped holey graphene hollow microspheres and their use as an active electrode material for lithium ion batteries.
    Jiang ZJ; Jiang Z
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19082-91. PubMed ID: 25310365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-capacity anode materials for sodium-ion batteries.
    Kim Y; Ha KH; Oh SM; Lee KT
    Chemistry; 2014 Sep; 20(38):11980-92. PubMed ID: 25113803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries.
    Yu DY; Prikhodchenko PV; Mason CW; Batabyal SK; Gun J; Sladkevich S; Medvedev AG; Lev O
    Nat Commun; 2013; 4():2922. PubMed ID: 24322450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating 3D Flower-Like Hierarchical Cu2NiSnS4 with Reduced Graphene Oxide as Advanced Anode Materials for Na-Ion Batteries.
    Yuan S; Wang S; Li L; Zhu YH; Zhang XB; Yan JM
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9178-84. PubMed ID: 26986821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic layer deposition of amorphous TiO2 on graphene as an anode for Li-ion batteries.
    Ban C; Xie M; Sun X; Travis JJ; Wang G; Sun H; Dillon AC; Lian J; George SM
    Nanotechnology; 2013 Oct; 24(42):424002. PubMed ID: 24067324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-Principles Investigation of Adsorption and Diffusion of Ions on Pristine, Defective and B-doped Graphene.
    Wan W; Wang H
    Materials (Basel); 2015 Sep; 8(9):6163-6178. PubMed ID: 28793558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorene as an anode material for Na-ion batteries: a first-principles study.
    Kulish VV; Malyi OI; Persson C; Wu P
    Phys Chem Chem Phys; 2015 Jun; 17(21):13921-8. PubMed ID: 25947542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sc
    Lv X; Wei W; Sun Q; Yu L; Huang B; Dai Y
    Chemphyschem; 2017 Jun; 18(12):1627-1634. PubMed ID: 28383808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries.
    Cao X; Shi Y; Shi W; Rui X; Yan Q; Kong J; Zhang H
    Small; 2013 Oct; 9(20):3433-8. PubMed ID: 23637090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.