These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 24417968)

  • 1. Insight on the fate of CNS-targeted nanoparticles. Part II: Intercellular neuronal cell-to-cell transport.
    Tosi G; Vilella A; Chhabra R; Schmeisser MJ; Boeckers TM; Ruozi B; Vandelli MA; Forni F; Zoli M; Grabrucker AM
    J Control Release; 2014 Mar; 177():96-107. PubMed ID: 24417968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insight on the fate of CNS-targeted nanoparticles. Part I: Rab5-dependent cell-specific uptake and distribution.
    Vilella A; Tosi G; Grabrucker AM; Ruozi B; Belletti D; Vandelli MA; Boeckers TM; Forni F; Zoli M
    J Control Release; 2014 Jan; 174():195-201. PubMed ID: 24316476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation on mechanisms of glycopeptide nanoparticles for drug delivery across the blood-brain barrier.
    Tosi G; Fano RA; Bondioli L; Badiali L; Benassi R; Rivasi F; Ruozi B; Forni F; Vandelli MA
    Nanomedicine (Lond); 2011 Apr; 6(3):423-36. PubMed ID: 21542682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid nanoparticles as a new technological approach to enhance the delivery of cholesterol into the brain.
    Belletti D; Grabrucker AM; Pederzoli F; Menrath I; Vandelli MA; Tosi G; Duskey TJ; Forni F; Ruozi B
    Int J Pharm; 2018 May; 543(1-2):300-310. PubMed ID: 29608954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential use of polymeric nanoparticles for drug delivery across the blood-brain barrier.
    Tosi G; Bortot B; Ruozi B; Dolcetta D; Vandelli MA; Forni F; Severini GM
    Curr Med Chem; 2013; 20(17):2212-25. PubMed ID: 23458620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting the central nervous system: in vivo experiments with peptide-derivatized nanoparticles loaded with Loperamide and Rhodamine-123.
    Tosi G; Costantino L; Rivasi F; Ruozi B; Leo E; Vergoni AV; Tacchi R; Bertolini A; Vandelli MA; Forni F
    J Control Release; 2007 Sep; 122(1):1-9. PubMed ID: 17651855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sialic acid and glycopeptides conjugated PLGA nanoparticles for central nervous system targeting: In vivo pharmacological evidence and biodistribution.
    Tosi G; Vergoni AV; Ruozi B; Bondioli L; Badiali L; Rivasi F; Costantino L; Forni F; Vandelli MA
    J Control Release; 2010 Jul; 145(1):49-57. PubMed ID: 20338201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain-targeted polymeric nanoparticles: in vivo evidence of different routes of administration in rodents.
    Tosi G; Ruozi B; Belletti D; Vilella A; Zoli M; Vandelli MA; Forni F
    Nanomedicine (Lond); 2013 Sep; 8(9):1373-83. PubMed ID: 23565661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functionalized nanoparticles provide early cardioprotection after acute myocardial infarction.
    Chang MY; Yang YJ; Chang CH; Tang AC; Liao WY; Cheng FY; Yeh CS; Lai JJ; Stayton PS; Hsieh PC
    J Control Release; 2013 Sep; 170(2):287-94. PubMed ID: 23665256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable self-assembled nanoparticles of poly (D,L-lactide-co-glycolide)/hyaluronic acid block copolymers for target delivery of docetaxel to breast cancer.
    Huang J; Zhang H; Yu Y; Chen Y; Wang D; Zhang G; Zhou G; Liu J; Sun Z; Sun D; Lu Y; Zhong Y
    Biomaterials; 2014 Jan; 35(1):550-66. PubMed ID: 24135268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative evaluation of the degree of pegylation of poly(lactic-co-glycolic acid) nanoparticles in enhancing central nervous system delivery of loperamide.
    Kirby BP; Pabari R; Chen CN; Al Baharna M; Walsh J; Ramtoola Z
    J Pharm Pharmacol; 2013 Oct; 65(10):1473-81. PubMed ID: 24028614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro uptake evaluation in Caco-2 cells and in vivo results in diabetic rats of insulin-loaded PLGA nanoparticles.
    Reix N; Parat A; Seyfritz E; Van der Werf R; Epure V; Ebel N; Danicher L; Marchioni E; Jeandidier N; Pinget M; Frère Y; Sigrist S
    Int J Pharm; 2012 Nov; 437(1-2):213-20. PubMed ID: 22940208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multifunctional poly(D,L-lactide-co-glycolide)/montmorillonite (PLGA/MMT) nanoparticles decorated by Trastuzumab for targeted chemotherapy of breast cancer.
    Sun B; Ranganathan B; Feng SS
    Biomaterials; 2008 Feb; 29(4):475-86. PubMed ID: 17953985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel.
    Feng SS; Mei L; Anitha P; Gan CW; Zhou W
    Biomaterials; 2009 Jul; 30(19):3297-306. PubMed ID: 19299012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and statistical optimization of surface engineered PLGA nanoparticles for naso-brain delivery of ropinirole hydrochloride: in-vitro-ex-vivo studies.
    Patil GB; Surana SJ
    J Biomater Sci Polym Ed; 2013; 24(15):1740-56. PubMed ID: 23705812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium phosphate embedded PLGA nanoparticles: a promising gene delivery vector with high gene loading and transfection efficiency.
    Tang J; Chen JY; Liu J; Luo M; Wang YJ; Wei XW; Gao X; Wang BL; Liu YB; Yi T; Tong AP; Song XR; Xie YM; Zhao Y; Xiang M; Huang Y; Zheng Y
    Int J Pharm; 2012 Jul; 431(1-2):210-21. PubMed ID: 22561795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(D,L-lactide-co-glycolide acid) nanoparticles for DNA delivery: waiving preparation complexity and increasing efficiency.
    Gvili K; Benny O; Danino D; Machluf M
    Biopolymers; 2007 Apr 5-15; 85(5-6):379-91. PubMed ID: 17266128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dry powders based on PLGA nanoparticles for pulmonary delivery of antibiotics: modulation of encapsulation efficiency, release rate and lung deposition pattern by hydrophilic polymers.
    Ungaro F; d'Angelo I; Coletta C; d'Emmanuele di Villa Bianca R; Sorrentino R; Perfetto B; Tufano MA; Miro A; La Rotonda MI; Quaglia F
    J Control Release; 2012 Jan; 157(1):149-59. PubMed ID: 21864595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticle transport across in vitro olfactory cell monolayers.
    Gartziandia O; Egusquiaguirre SP; Bianco J; Pedraz JL; Igartua M; Hernandez RM; Préat V; Beloqui A
    Int J Pharm; 2016 Feb; 499(1-2):81-89. PubMed ID: 26721725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling of biotin-(poly(ethylene glycol))amine to poly(D,L-lactide-co-glycolide) nanoparticles for versatile surface modification.
    Weiss B; Schneider M; Muys L; Taetz S; Neumann D; Schaefer UF; Lehr CM
    Bioconjug Chem; 2007; 18(4):1087-94. PubMed ID: 17590034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.