BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 24417969)

  • 1. Self-assembled peptide nanoparticles as tumor microenvironment activatable probes for tumor targeting and imaging.
    Zhao Y; Ji T; Wang H; Li S; Zhao Y; Nie G
    J Control Release; 2014 Mar; 177():11-9. PubMed ID: 24417969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor targeting and microenvironment-responsive nanoparticles for gene delivery.
    Huang S; Shao K; Kuang Y; Liu Y; Li J; An S; Guo Y; Ma H; He X; Jiang C
    Biomaterials; 2013 Jul; 34(21):5294-302. PubMed ID: 23562171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating tumor metastatic potential by imaging intratumoral acidosis via pH-activatable near-infrared fluorescent probe.
    Wang L; Fan Z; Zhang J; Changyi Y; Huang C; Gu Y; Xu Z; Tang Z; Lu W; Wei X; Li C
    Int J Cancer; 2015 Feb; 136(4):E107-16. PubMed ID: 25155456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH-sensitive drug-delivery systems for tumor targeting.
    He X; Li J; An S; Jiang C
    Ther Deliv; 2013 Dec; 4(12):1499-510. PubMed ID: 24304248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor-targeting and microenvironment-responsive smart nanoparticles for combination therapy of antiangiogenesis and apoptosis.
    Huang S; Shao K; Liu Y; Kuang Y; Li J; An S; Guo Y; Ma H; Jiang C
    ACS Nano; 2013 Mar; 7(3):2860-71. PubMed ID: 23451830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic/upconversion fluorescent NaGdF4:Yb,Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo.
    Liu C; Gao Z; Zeng J; Hou Y; Fang F; Li Y; Qiao R; Shen L; Lei H; Yang W; Gao M
    ACS Nano; 2013 Aug; 7(8):7227-40. PubMed ID: 23879437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel live imaging techniques of cellular functions and in vivo tumors based on precise design of small molecule-based 'activatable' fluorescence probes.
    Urano Y
    Curr Opin Chem Biol; 2012 Dec; 16(5-6):602-8. PubMed ID: 23149093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of ZnS:Mn/ZnS core/shell nanoparticles for tumor targeting and imaging in vivo.
    Yu Z; Ma X; Yu B; Pan Y; Liu Z
    J Biomater Appl; 2013 Aug; 28(2):232-40. PubMed ID: 22532407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors.
    Ling D; Park W; Park SJ; Lu Y; Kim KS; Hackett MJ; Kim BH; Yim H; Jeon YS; Na K; Hyeon T
    J Am Chem Soc; 2014 Apr; 136(15):5647-55. PubMed ID: 24689550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activatable Water-Soluble Probes Enhance Tumor Imaging by Responding to Dysregulated pH and Exhibiting High Tumor-to-Liver Fluorescence Emission Contrast.
    Xiong H; Kos P; Yan Y; Zhou K; Miller JB; Elkassih S; Siegwart DJ
    Bioconjug Chem; 2016 Jul; 27(7):1737-44. PubMed ID: 27285307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of NIR dyes in cancer targeting and imaging.
    Luo S; Zhang E; Su Y; Cheng T; Shi C
    Biomaterials; 2011 Oct; 32(29):7127-38. PubMed ID: 21724249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activatable imaging probes with amplified fluorescent signals.
    Lee S; Park K; Kim K; Choi K; Kwon IC
    Chem Commun (Camb); 2008 Sep; (36):4250-60. PubMed ID: 18802536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Simple, pH-Activatable Fluorescent Aptamer Probe with Ultralow Background for Bispecific Tumor Imaging.
    Shi H; Lei Y; Ge J; He X; Cui W; Ye X; Liu J; Wang K
    Anal Chem; 2019 Jul; 91(14):9154-9160. PubMed ID: 31185714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acidic microenvironment triggered
    Huang J; Wu Y; He H; Ma W; Liu J; Cheng H; Sun H; He X; Wang K
    Theranostics; 2022; 12(7):3474-3487. PubMed ID: 35547767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved intratumoral nanoparticle extravasation and penetration by mild hyperthermia.
    Li L; ten Hagen TL; Bolkestein M; Gasselhuber A; Yatvin J; van Rhoon GC; Eggermont AM; Haemmerich D; Koning GA
    J Control Release; 2013 Apr; 167(2):130-7. PubMed ID: 23391444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascular-targeted nanotherapy for obesity: unexpected passive targeting mechanism to obese fat for the enhancement of active drug delivery.
    Hossen MN; Kajimoto K; Akita H; Hyodo M; Harashima H
    J Control Release; 2012 Oct; 163(2):101-10. PubMed ID: 22982237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor-targeting peptide conjugated pH-responsive micelles as a potential drug carrier for cancer therapy.
    Wu XL; Kim JH; Koo H; Bae SM; Shin H; Kim MS; Lee BH; Park RW; Kim IS; Choi K; Kwon IC; Kim K; Lee DS
    Bioconjug Chem; 2010 Feb; 21(2):208-13. PubMed ID: 20073455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective in vivo imaging of syngeneic, spontaneous, and xenograft tumors using a novel tumor cell-specific hsp70 peptide-based probe.
    Stangl S; Varga J; Freysoldt B; Trajkovic-Arsic M; Siveke JT; Greten FR; Ntziachristos V; Multhoff G
    Cancer Res; 2014 Dec; 74(23):6903-12. PubMed ID: 25300920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pH-responsive α-helical cell penetrating peptide-mediated liposomal delivery system.
    Zhang Q; Tang J; Fu L; Ran R; Liu Y; Yuan M; He Q
    Biomaterials; 2013 Oct; 34(32):7980-93. PubMed ID: 23891517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-infrared fluorescence imaging using organic dye nanoparticles.
    Yu J; Zhang X; Hao X; Zhang X; Zhou M; Lee CS; Chen X
    Biomaterials; 2014 Mar; 35(10):3356-64. PubMed ID: 24461324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.