These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
735 related articles for article (PubMed ID: 24418134)
1. Synthesis of zwitterionic polymer brushes hybrid silica nanoparticles via controlled polymerization for highly efficient enrichment of glycopeptides. Huang G; Xiong Z; Qin H; Zhu J; Sun Z; Zhang Y; Peng X; ou J; Zou H Anal Chim Acta; 2014 Jan; 809():61-8. PubMed ID: 24418134 [TBL] [Abstract][Full Text] [Related]
2. Facile synthesis of zwitterionic polymer-coated core-shell magnetic nanoparticles for highly specific capture of N-linked glycopeptides. Chen Y; Xiong Z; Zhang L; Zhao J; Zhang Q; Peng L; Zhang W; Ye M; Zou H Nanoscale; 2015 Feb; 7(7):3100-8. PubMed ID: 25611677 [TBL] [Abstract][Full Text] [Related]
3. Facile fabrication of zwitterionic magnetic composites by one-step distillation-precipitation polymerization for highly specific enrichment of glycopeptides. Ji Y; Lv R; Song S; Huang J; Zhang L; Huang G; Li J; Ou J Anal Chim Acta; 2019 Apr; 1053():43-53. PubMed ID: 30712568 [TBL] [Abstract][Full Text] [Related]
4. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification. J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480 [TBL] [Abstract][Full Text] [Related]
5. Preparation of hydrazine functionalized polymer brushes hybrid magnetic nanoparticles for highly specific enrichment of glycopeptides. Huang G; Sun Z; Qin H; Zhao L; Xiong Z; Peng X; Ou J; Zou H Analyst; 2014 May; 139(9):2199-206. PubMed ID: 24615010 [TBL] [Abstract][Full Text] [Related]
6. Preparation of sequence-controlled triblock copolymer-grafted silica microparticles by sequential-ATRP for highly efficient glycopeptides enrichment. Pan Y; Ma C; Tong W; Fan C; Zhang Q; Zhang W; Tian F; Peng B; Qin W; Qian X Anal Chem; 2015 Jan; 87(1):656-62. PubMed ID: 25495601 [TBL] [Abstract][Full Text] [Related]
7. [Preparation of cysteine-click maltose modified silica as a hydrophilic interaction liquid chromatography material for the enrichment of glycopeptides]. Sun X; Zhang L; Zhang W Se Pu; 2017 Jul; 35(7):696-702. PubMed ID: 29048832 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of Zwitterionic Polymer Particles via Combined Distillation Precipitation Polymerization and Click Chemistry for Highly Efficient Enrichment of Glycopeptide. Liu J; Yang K; Shao W; Li S; Wu Q; Zhang S; Qu Y; Zhang L; Zhang Y ACS Appl Mater Interfaces; 2016 Aug; 8(34):22018-24. PubMed ID: 27498760 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of magnetic zwitterionic-hydrophilic material for the selective enrichment of N-linked glycopeptides. Zhao Y; Chen Y; Xiong Z; Sun X; Zhang Q; Gan Y; Zhang L; Zhang W J Chromatogr A; 2017 Jan; 1482():23-31. PubMed ID: 28049584 [TBL] [Abstract][Full Text] [Related]
11. Efficient enrichment of glycopeptides using metal-organic frameworks by hydrophilic interaction chromatography. Ji Y; Xiong Z; Huang G; Liu J; Zhang Z; Liu Z; Ou J; Ye M; Zou H Analyst; 2014 Oct; 139(19):4987-93. PubMed ID: 25110774 [TBL] [Abstract][Full Text] [Related]
12. Multivalent hydrazide-functionalized magnetic nanoparticles for glycopeptide enrichment and identification. Cao Q; Ma C; Bai H; Li X; Yan H; Zhao Y; Ying W; Qian X Analyst; 2014 Feb; 139(3):603-9. PubMed ID: 24328033 [TBL] [Abstract][Full Text] [Related]
13. Hydrophilic Mesoporous Silica Materials for Highly Specific Enrichment of N-Linked Glycopeptide. Sun N; Wang J; Yao J; Deng C Anal Chem; 2017 Feb; 89(3):1764-1771. PubMed ID: 28068756 [TBL] [Abstract][Full Text] [Related]
14. Ultrathin Au nanowires assisted magnetic graphene-silica ZIC-HILIC composites for highly specific enrichment of N-linked glycopeptides. Jiao F; Gao F; Wang H; Deng Y; Zhang Y; Qian X; Zhang Y Anal Chim Acta; 2017 Jun; 970():47-56. PubMed ID: 28433058 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of branched PEG brushes hybrid hydrophilic magnetic nanoparticles for the selective enrichment of N-linked glycopeptides. Xiong Z; Zhao L; Wang F; Zhu J; Qin H; Wu R; Zhang W; Zou H Chem Commun (Camb); 2012 Aug; 48(65):8138-40. PubMed ID: 22772488 [TBL] [Abstract][Full Text] [Related]
16. Magnetic bead-based hydrophilic interaction liquid chromatography for glycopeptide enrichments. Yeh CH; Chen SH; Li DT; Lin HP; Huang HJ; Chang CI; Shih WL; Chern CL; Shi FK; Hsu JL J Chromatogr A; 2012 Feb; 1224():70-8. PubMed ID: 22226559 [TBL] [Abstract][Full Text] [Related]
18. It is all about the solvent: on the importance of the mobile phase for ZIC-HILIC glycopeptide enrichment. Alagesan K; Khilji SK; Kolarich D Anal Bioanal Chem; 2017 Jan; 409(2):529-538. PubMed ID: 27909778 [TBL] [Abstract][Full Text] [Related]
19. Colloidal interactions of inorganic nanoparticles grafted with zwitterionic polymer brushes and gels by surface-mediated seeded polymerization. An S; Choi SK; Cho JW; Kim HT; Kim JW Macromol Rapid Commun; 2014 Aug; 35(15):1356-61. PubMed ID: 24840728 [TBL] [Abstract][Full Text] [Related]
20. Zirconia layer coated mesoporous silica microspheres as HILIC SPE materials for selective glycopeptide enrichment. Wan H; Yan J; Yu L; Sheng Q; Zhang X; Xue X; Li X; Liang X Analyst; 2011 Nov; 136(21):4422-30. PubMed ID: 21897947 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]