These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 24418157)

  • 21. Loss of mitochondrial energetics is associated with poor recovery of muscle function but not mass following disuse atrophy.
    Trevino MB; Zhang X; Standley RA; Wang M; Han X; Reis FCG; Periasamy M; Yu G; Kelly DP; Goodpaster BH; Vega RB; Coen PM
    Am J Physiol Endocrinol Metab; 2019 Nov; 317(5):E899-E910. PubMed ID: 31479303
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Skeletal Muscle Recovery from Disuse Atrophy: Protein Turnover Signaling and Strategies for Accelerating Muscle Regrowth.
    Mirzoev TM
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33114683
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxidative stress and disuse muscle atrophy: cause or consequence?
    Powers SK; Smuder AJ; Judge AR
    Curr Opin Clin Nutr Metab Care; 2012 May; 15(3):240-5. PubMed ID: 22466926
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Muscle-specific changes in protein synthesis with aging and reloading after disuse atrophy.
    Miller BF; Baehr LM; Musci RV; Reid JJ; Peelor FF; Hamilton KL; Bodine SC
    J Cachexia Sarcopenia Muscle; 2019 Dec; 10(6):1195-1209. PubMed ID: 31313502
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Physiological Reloading Recovers Histologically Disuse Atrophy of the Articular Cartilage and Bone by Hindlimb Suspension in Rat Knee Joint.
    Takahashi I; Matsuzaki T; Kuroki H; Hoso M
    Cartilage; 2021 Dec; 13(2_suppl):1530S-1539S. PubMed ID: 34886706
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of denervation on mitochondrially mediated apoptosis in skeletal muscle.
    Adhihetty PJ; O'Leary MF; Chabi B; Wicks KL; Hood DA
    J Appl Physiol (1985); 2007 Mar; 102(3):1143-51. PubMed ID: 17122379
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitochondrial aberrations during the progression of disuse atrophy differentially affect male and female mice.
    Rosa-Caldwell ME; Lim S; Haynie WS; Brown JL; Lee DE; Dunlap KR; Jansen LT; Washington TA; Wiggs MP; Greene NP
    J Cachexia Sarcopenia Muscle; 2021 Dec; 12(6):2056-2068. PubMed ID: 34585846
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neutralizing mitochondrial ROS does not rescue muscle atrophy induced by hindlimb unloading in female mice.
    Eshima H; Siripoksup P; Mahmassani ZS; Johnson JM; Ferrara PJ; Verkerke ARP; Salcedo A; Drummond MJ; Funai K
    J Appl Physiol (1985); 2020 Jul; 129(1):124-132. PubMed ID: 32552434
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gomisin G improves muscle strength by enhancing mitochondrial biogenesis and function in disuse muscle atrophic mice.
    Yeon M; Choi H; Chun KH; Lee JH; Jun HS
    Biomed Pharmacother; 2022 Sep; 153():113406. PubMed ID: 36076532
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Effects of tetramethylpyrazine on nitric oxide synthase activity and calcium ion concentration of skeletal muscle in hindlimb unloading rats].
    Wu X; Gao YF; Zhao XH; Cui JH
    Zhonghua Yi Xue Za Zhi; 2012 Aug; 92(29):2075-7. PubMed ID: 23253813
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydroxytyrosol ameliorates oxidative stress and mitochondrial dysfunction in doxorubicin-induced cardiotoxicity in rats with breast cancer.
    Granados-Principal S; El-Azem N; Pamplona R; Ramirez-Tortosa C; Pulido-Moran M; Vera-Ramirez L; Quiles JL; Sanchez-Rovira P; Naudí A; Portero-Otin M; Perez-Lopez P; Ramirez-Tortosa M
    Biochem Pharmacol; 2014 Jul; 90(1):25-33. PubMed ID: 24727461
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The activation of apoptosis factor in hindlimb unloading-induced muscle atrophy under normal and low-temperature environmental conditions.
    Nagano K; Suzaki E; Nagano Y; Kataoka K; Ozawa K
    Acta Histochem; 2008; 110(6):505-18. PubMed ID: 18420259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Curcumin treatment prevents increased proteasome and apoptosome activities in rat skeletal muscle during reloading and improves subsequent recovery.
    Vazeille E; Slimani L; Claustre A; Magne H; Labas R; Béchet D; Taillandier D; Dardevet D; Astruc T; Attaix D; Combaret L
    J Nutr Biochem; 2012 Mar; 23(3):245-51. PubMed ID: 21497497
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intermittent reloading attenuates muscle atrophy through modulating Akt/mTOR pathway.
    Miyazaki M; Noguchi M; Takemasa T
    Med Sci Sports Exerc; 2008 May; 40(5):848-55. PubMed ID: 18408614
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Responses of skeletal muscle size and anabolism are reproducible with multiple periods of unloading/reloading.
    Shimkus KL; Shirazi-Fard Y; Wiggs MP; Ullah ST; Pohlenz C; Gatlin DM; Carroll CC; Hogan HA; Fluckey JD
    J Appl Physiol (1985); 2018 Nov; 125(5):1456-1467. PubMed ID: 30091665
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Muscle Phenotype, Proteolysis, and Atrophy Signaling During Reloading in Mice: Effects of Curcumin on the Gastrocnemius.
    Mañas-García L; Bargalló N; Gea J; Barreiro E
    Nutrients; 2020 Jan; 12(2):. PubMed ID: 32024036
    [No Abstract]   [Full Text] [Related]  

  • 37. Muscle from aged rats is resistant to mechanotherapy during atrophy and reloading.
    Lawrence MM; Van Pelt DW; Confides AL; Hettinger ZR; Hunt ER; Reid JJ; Laurin JL; Peelor FF; Butterfield TA; Miller BF; Dupont-Versteegden EE
    Geroscience; 2021 Feb; 43(1):65-83. PubMed ID: 32588343
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recovery of the soleus muscle after short- and long-term disuse induced by hindlimb unloading: effects on the electrical properties and myosin heavy chain profile.
    Desaphy JF; Pierno S; Liantonio A; De Luca A; Didonna MP; Frigeri A; Nicchia GP; Svelto M; Camerino C; Zallone A; Camerino DC
    Neurobiol Dis; 2005 Mar; 18(2):356-65. PubMed ID: 15686964
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control of skeletal muscle atrophy in response to disuse: clinical/preclinical contentions and fallacies of evidence.
    Atherton PJ; Greenhaff PL; Phillips SM; Bodine SC; Adams CM; Lang CH
    Am J Physiol Endocrinol Metab; 2016 Sep; 311(3):E594-604. PubMed ID: 27382036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The oestrous cycle and skeletal muscle atrophy: Investigations in rodent models of muscle loss.
    Rosa-Caldwell ME; Mortreux M; Kaiser UB; Sung DM; Bouxsein ML; Dunlap KR; Greene NP; Rutkove SB
    Exp Physiol; 2021 Dec; 106(12):2472-2488. PubMed ID: 34569104
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.