These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
592 related articles for article (PubMed ID: 24418280)
1. Chest compression depth after change in CPR guidelines--improved but not sufficient. Kampmeier TG; Lukas RP; Steffler C; Sauerland C; Weber TP; Van Aken H; Bohn A Resuscitation; 2014 Apr; 85(4):503-8. PubMed ID: 24418280 [TBL] [Abstract][Full Text] [Related]
2. Quality of closed chest compression on a manikin in ambulance vehicles and flying helicopters with a real time automated feedback. Havel C; Schreiber W; Trimmel H; Malzer R; Haugk M; Richling N; Riedmüller E; Sterz F; Herkner H Resuscitation; 2010 Jan; 81(1):59-64. PubMed ID: 19926386 [TBL] [Abstract][Full Text] [Related]
4. Quality of out-of-hospital cardiopulmonary resuscitation with real time automated feedback: a prospective interventional study. Kramer-Johansen J; Myklebust H; Wik L; Fellows B; Svensson L; Sørebø H; Steen PA Resuscitation; 2006 Dec; 71(3):283-92. PubMed ID: 17070980 [TBL] [Abstract][Full Text] [Related]
5. Rescuer fatigue under the 2010 ERC guidelines, and its effect on cardiopulmonary resuscitation (CPR) performance. McDonald CH; Heggie J; Jones CM; Thorne CJ; Hulme J Emerg Med J; 2013 Aug; 30(8):623-7. PubMed ID: 22851670 [TBL] [Abstract][Full Text] [Related]
6. The capability of professional- and lay-rescuers to estimate the chest compression-depth target: a short, randomized experiment. van Tulder R; Laggner R; Kienbacher C; Schmid B; Zajicek A; Haidvogel J; Sebald D; Laggner AN; Herkner H; Sterz F; Eisenburger P Resuscitation; 2015 Apr; 89():137-41. PubMed ID: 25660952 [TBL] [Abstract][Full Text] [Related]
7. LUCAS 2™ device, compression depth, and the 2010 cardiopulmonary resuscitation guidelines. Trivedi K; Borovnik-Lesjak V; Gazmuri RJ Am J Emerg Med; 2013 Jul; 31(7):1154.e1-2. PubMed ID: 23688566 [TBL] [Abstract][Full Text] [Related]
8. The influence of scenario-based training and real-time audiovisual feedback on out-of-hospital cardiopulmonary resuscitation quality and survival from out-of-hospital cardiac arrest. Bobrow BJ; Vadeboncoeur TF; Stolz U; Silver AE; Tobin JM; Crawford SA; Mason TK; Schirmer J; Smith GA; Spaite DW Ann Emerg Med; 2013 Jul; 62(1):47-56.e1. PubMed ID: 23465553 [TBL] [Abstract][Full Text] [Related]
9. Incomplete chest wall decompression: a clinical evaluation of CPR performance by EMS personnel and assessment of alternative manual chest compression-decompression techniques. Aufderheide TP; Pirrallo RG; Yannopoulos D; Klein JP; von Briesen C; Sparks CW; Deja KA; Conrad CJ; Kitscha DJ; Provo TA; Lurie KG Resuscitation; 2005 Mar; 64(3):353-62. PubMed ID: 15733766 [TBL] [Abstract][Full Text] [Related]
10. Improved neurological outcome with continuous chest compressions compared with 30:2 compressions-to-ventilations cardiopulmonary resuscitation in a realistic swine model of out-of-hospital cardiac arrest. Ewy GA; Zuercher M; Hilwig RW; Sanders AB; Berg RA; Otto CW; Hayes MM; Kern KB Circulation; 2007 Nov; 116(22):2525-30. PubMed ID: 17998457 [TBL] [Abstract][Full Text] [Related]
11. 2017 American Heart Association Focused Update on Pediatric Basic Life Support and Cardiopulmonary Resuscitation Quality: An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Atkins DL; de Caen AR; Berger S; Samson RA; Schexnayder SM; Joyner BL; Bigham BL; Niles DE; Duff JP; Hunt EA; Meaney PA Circulation; 2018 Jan; 137(1):e1-e6. PubMed ID: 29114009 [TBL] [Abstract][Full Text] [Related]
12. Cardiopulmonary resuscitation guidance improves medical students' adherence to guidelines in simulated cardiac arrest: a randomised cross-over study. Lukas RP; Engel P; Wecker S; Thies S; Friederichs H; Gerss J; Van Aken H; Hahnenkamp K; Bohn A Eur J Anaesthesiol; 2013 Dec; 30(12):752-7. PubMed ID: 23702601 [TBL] [Abstract][Full Text] [Related]
13. Chest compression rates during cardiopulmonary resuscitation are suboptimal: a prospective study during in-hospital cardiac arrest. Abella BS; Sandbo N; Vassilatos P; Alvarado JP; O'Hearn N; Wigder HN; Hoffman P; Tynus K; Vanden Hoek TL; Becker LB Circulation; 2005 Feb; 111(4):428-34. PubMed ID: 15687130 [TBL] [Abstract][Full Text] [Related]
16. Perspectives and new approaches for improving cardiopulmonary resuscitation in adults beyond current guidelines. Klein HH; Arntz HR Z Kardiol; 2004 Jan; 93(1):18-22. PubMed ID: 14740237 [TBL] [Abstract][Full Text] [Related]
17. Transport with ongoing resuscitation: a comparison between manual and mechanical compression. Gässler H; Ventzke MM; Lampl L; Helm M Emerg Med J; 2013 Jul; 30(7):589-92. PubMed ID: 22833595 [TBL] [Abstract][Full Text] [Related]
18. Quality of cardio-pulmonary resuscitation (CPR) during paediatric resuscitation training: time to stop the blind leading the blind. Arshid M; Lo TY; Reynolds F Resuscitation; 2009 May; 80(5):558-60. PubMed ID: 19328616 [TBL] [Abstract][Full Text] [Related]
19. Association of Real-Time Feedback and Cardiopulmonary-Resuscitation Quality Delivered by Ambulance Personnel for Out-of-Hospital Cardiac Arrest. Lyngby RM; Quinn T; Oelrich RM; Nikoletou D; Gregers MCT; Kjølbye JS; Ersbøll AK; Folke F J Am Heart Assoc; 2023 Oct; 12(20):e029457. PubMed ID: 37830329 [TBL] [Abstract][Full Text] [Related]
20. Comparing three CPR feedback devices and standard BLS in a single rescuer scenario: a randomised simulation study. Zapletal B; Greif R; Stumpf D; Nierscher FJ; Frantal S; Haugk M; Ruetzler K; Schlimp C; Fischer H Resuscitation; 2014 Apr; 85(4):560-6. PubMed ID: 24215730 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]